Benutzeranleitung / Produktwartung MX4428 des Produzenten Tyco
Zur Seite of 134
MX4428 MXP ENGINEERING / TECHNICAL MANUAL MX4428 PRODUCT MANUAL VOLUME 11 Document Number: LT0273 Issue 1.5; 24 March 2006 - APPROVALS - AUSTRALIAN STANDARD AS442 8.1 - SSL Listing Number ...............................................................
MX4428 MXP Engineering /Technical Manual Document: LT0273 Page ii 24 March 2006 Issue 1.5 NON-DISCLOSURE AGREEMENT Tyco (THE COMPANY) and the User of this/ t hese doc ument(s) desire to share proprietary technical inf ormatio n concerning electronic s ystems.
Document: LT0273 MX4428 MXP Engineering / Technical Manual Issue 1.5 24 March 2006 Page iii TABLE OF CONTENTS NON-DISCLOSURE AGREEMENT ....................................................................................................... II END USER LIABILI TY DISCLAIMER .
MX4428 MXP Engineering /Technical Manual Document: LT0273 Page iv 24 March 2006 Issue 1.5 3.11 MUB UNIVERS AL BASE .................................................................................................... 3-25 3.11.1 GENERAL................
Document: LT0273 MX4428 MXP Engineering / Technical Manual Issue 1.5 24 March 2006 Page v 3.25.2 SAD .............................................................................................................................. 3-51 3.25.3 AVF/SAD ...
MX4428 MXP Engineering /Technical Manual Document: LT0273 Page vi 24 March 2006 Issue 1.5 8.1.9 MXP EVENT LOG .......................................................................................................... 8-9 8.2 FLASH PROGRAMMING ........
Document: LT0273 MX4428 MXP Engineering / Technical Manual Introduction Issue 1.5 24 March 2006 Page 1-1 CHAPTER 1 INTRODUCTION.
MX4428 MXP Engineering / Technical Manual Document: LT0273 Introduction Page 1-2 24 March 2006 Issue 1.5 1.1 ABOUT THIS MANUAL This manual (MX4428 Product Manual Volume 11) is intended to provide all information and procedures required to incorporate one or more MXPs within an MX4428 system.
Document: LT0273 MX4428 MXP Engineering / Technical Manual Introduction Issue 1.5 24 March 2006 Page 1-3 Volume 9, F4000 MPR Technical & Engineering Manuals , Volume 9-1 provides technical details on the MPR and Addressable devices, and Volume 9-2 provides Engineering Design information for correctly engineering the MPR loop (LT0139/LT0140).
MX4428 MXP Engineering / Technical Manual Document: LT0273 Introduction Page 1-4 24 March 2006 Issue 1.5 1.4 TERMINOLOGY AAR Analogue Addressable Responder.
Document: LT0273 MX4428 MXP Engineering / Technical Manual Responder Loop Design Considerations Issue 1.5 24 March 2006 Page 2-1 CHAPTER 2 RESPONDER LOOP DESIGN CONSIDERATIONS.
MX4428 MXP Engineering / Technical Manual Document: LT0273 Responder Loop Design Considerations Page 2-2 24 March 2006 Issue 1.5 2.1 MXP APPLICATION CONSIDERATIONS The inclusion of one or more MXPs in an MX4428 system requires consideration of ..... (i) The definition of zones throughout the area to be protected.
Document: LT0273 MX4428 MXP Engineering / Technical Manual Responder Loop Design Considerations Issue 1.5 24 March 2006 Page 2-3 2.2 "LOGICAL" RESPONDERS 2.2.1 THEORY The MX4428 Master Panel can transfer data to and from up to 127 uniquely addressed Responders distributed around the MX4428 Responder Loop.
MX4428 MXP Engineering / Technical Manual Document: LT0273 Responder Loop Design Considerations Page 2-4 24 March 2006 Issue 1.5 Number of Logical Responders (NLR) Number of Circuits (Relays) availabl.
Document: LT0273 MX4428 MXP Engineering / Technical Manual Responder Loop Design Considerations Issue 1.5 24 March 2006 Page 2-5 MAPPED TO DEVICE 1-16 DEVICE 17-32 DEVICE 33-48 DEVICE 49-64 DEVICE 65-.
MX4428 MXP Engineering / Technical Manual Document: LT0273 Responder Loop Design Considerations Page 2-6 24 March 2006 Issue 1.5 So far only input devices have been considered.
Document: LT0273 MX4428 MXP Engineering / Technical Manual Device Information and Programming Issue 1.5 24 March 2006 Page 3-1 CHAPTER 3 DEVICE INFORMATION AND PROGRAMMING.
MX4428 MXP Engineering / Technical Manual Document: LT0273 Device Information and Programming Page 3-2 24 March 2006 Issue 1.5 3.1 DEVICE TYPES The MXP can communicate with a mix of up to 200 addressable devices, within limits defined by loop size. 3.
Document: LT0273 MX4428 MXP Engineering / Technical Manual Device Information and Programming Issue 1.5 24 March 2006 Page 3-3 The standard base for use with the 814 detectors is: MUB Minerva Universal Base (4”) 5B Minerva Universal Base (5”) The following special purpose bases may also be used.
MX4428 MXP Engineering / Technical Manual Document: LT0273 Device Information and Programming Page 3-4 24 March 2006 Issue 1.5 e) 814CH Analogue CO (Carbon monoxide) Detector + Heat Detector This unit uses a special sensor to detect carbon monoxide, and in addition incorporates a temperature sensor.
Document: LT0273 MX4428 MXP Engineering / Technical Manual Device Information and Programming Issue 1.5 24 March 2006 Page 3-5 m) Sounder Notification Module SNM800 This unit has a relay rated at 2A 30Vdc for switching external loads. Supervision of load wiring and the load supply is provided.
MX4428 MXP Engineering / Technical Manual Document: LT0273 Device Information and Programming Page 3-6 24 March 2006 Issue 1.5 All loop devices are rated at a loop voltage of 20Vdc - 40Vdc and a signalling voltage of 2V p-p – 6V p-p. Alarm Currents specified do not include remote indicators.
Document: LT0273 MX4428 MXP Engineering / Technical Manual Device Information and Programming Issue 1.5 24 March 2006 Page 3-7 3.2 DEVICE HANDLING CAPABILITY 3.2.1 OVERVIEW The parameters which determine the maximum number of each device type that can be put on a loop are as follows.
MX4428 MXP Engineering / Technical Manual Document: LT0273 Device Information and Programming Page 3-8 24 March 2006 Issue 1.5 It is recommended that the PC program F4000CAL is used for conducting the loop loading calculations. However note that it does not include the isolator base load ing, this must be done manually.
Document: LT0273 MX4428 MXP Engineering / Technical Manual Device Information and Programming Issue 1.5 24 March 2006 Page 3-9 3.2.4 ISOLATOR BASE LOADING If isolator bases are being used, calculate t.
MX4428 MXP Engineering / Technical Manual Document: LT0273 Device Information and Programming Page 3-10 24 March 2006 Issue 1.5 3.3 OUTPUT CONTROL The following “outputs” are available on the Anal.
Document: LT0273 MX4428 MXP Engineering / Technical Manual Device Information and Programming Issue 1.5 24 March 2006 Page 3-11 3.3.1 PROGRAMMING The programming of the output functions is done by setting the “mode” value for the RIM800, SNM800, and 814I, and by one of the 7 device parameters for the 814H, 814PH, and 814CH.
MX4428 MXP Engineering / Technical Manual Document: LT0273 Device Information and Programming Page 3-12 24 March 2006 Issue 1.5 3.4 DETECTOR PARAMETER SETTINGS SUMMARY The following table gives a summary of the MX4428 default and alternate settings, and approved range, for each detector type.
Document: LT0273 MX4428 MXP Engineering / Technical Manual Device Information and Programming Issue 1.5 24 March 2006 Page 3-13 Conversion from detector units to displayed val ues is by imagining a graph with a series of joined straight lines from (0,0) and passing through each of t he above defined points (e.
MX4428 MXP Engineering / Technical Manual Document: LT0273 Device Information and Programming Page 3-14 24 March 2006 Issue 1.5 3.6 MX4428 PROGRAMMING In the following sections information is given about the programming of each device in the MX4428.
Document: LT0273 MX4428 MXP Engineering / Technical Manual Device Information and Programming Issue 1.5 24 March 2006 Page 3-15 3.7 814H HEAT DETECTOR 3.7.1 GENERAL The 814H is an analogue thermal detector. The detector senses the air temperature and sends this value to the MXP.
MX4428 MXP Engineering / Technical Manual Document: LT0273 Device Information and Programming Page 3-16 24 March 2006 Issue 1.5 Parameter Description Default Value Heat Type 4 A/C – rate of rise enabled.
Document: LT0273 MX4428 MXP Engineering / Technical Manual Device Information and Programming Issue 1.5 24 March 2006 Page 3-17 3.8 814I IO NISATION SMOKE DETECTOR 3.8.1 GENERAL The 814I is an ionisation smoke detector. The de tector senses the amount of smoke present and sends this value to the MXP.
MX4428 MXP Engineering / Technical Manual Document: LT0273 Device Information and Programming Page 3-18 24 March 2006 Issue 1.5 Parameter Description Default Value Functional Base Control Remote LED C.
Document: LT0273 MX4428 MXP Engineering / Technical Manual Device Information and Programming Issue 1.5 24 March 2006 Page 3-19 3.9 814PH PHOTOELECTRIC SMOKE & HEAT DETECTOR & 814P P HOTOELECTRIC SMOKE ONLY DETECTOR 3.9.1 GENERAL The 814PH is a photoelectric smoke detector which also includes a temperature sensor.
MX4428 MXP Engineering / Technical Manual Document: LT0273 Device Information and Programming Page 3-20 24 March 2006 Issue 1.5 The mode selects the detection mode for the detector - smoke only, enhanced smoke, heat enabled or disabled, heat rate of rise enabled or disabled, smoke detection algorithm is SmartSense or FastLogic, etc.
Document: LT0273 MX4428 MXP Engineering / Technical Manual Device Information and Programming Issue 1.5 24 March 2006 Page 3-21 Parameter Description Default Value Smoke Algorithm Enhance smoke sensitivity with heat Rate of Rise.
MX4428 MXP Engineering / Technical Manual Document: LT0273 Device Information and Programming Page 3-22 24 March 2006 Issue 1.5 The following global parameters which may be set at the MX4428 affect all applicable points on all MXPs. MX4428 Reference Description Default 8XXPH UPPER TRACKING LIMIT Photo Upper Tracking Limit (i.
Document: LT0273 MX4428 MXP Engineering / Technical Manual Device Information and Programming Issue 1.5 24 March 2006 Page 3-23 3.10 814CH CARBON MONOXIDE + HEAT DETECTOR 3.10.1 GENERAL The 814CH is a carbon monoxide (CO) detector which also includes a t emperature sensor.
MX4428 MXP Engineering / Technical Manual Document: LT0273 Device Information and Programming Page 3-24 24 March 2006 Issue 1.5 The remaining parameters should not need changing.
Document: LT0273 MX4428 MXP Engineering / Technical Manual Device Information and Programming Issue 1.5 24 March 2006 Page 3-25 3.11 MUB UNIVERSAL BASE 3.11.1 GENERAL The MUB accommodates any of the MX 814 series detectors, and may also have an 814RB, 814SB, or MkII Sounder Base plugged into it.
MX4428 MXP Engineering / Technical Manual Document: LT0273 Device Information and Programming Page 3-26 24 March 2006 Issue 1.5 3.12 5BI ISOLATOR BASE 3.
Document: LT0273 MX4428 MXP Engineering / Technical Manual Device Information and Programming Issue 1.5 24 March 2006 Page 3-27 TYCO 5BI TYCO 5BI TYCO MUB ISOLA TOR ISOLA T OR UNIVERSAL BASE BASE BASE.
MX4428 MXP Engineering / Technical Manual Document: LT0273 Device Information and Programming Page 3-28 24 March 2006 Issue 1.5 3.13 814RB RELAY BASE 3.
Document: LT0273 MX4428 MXP Engineering / Technical Manual Device Information and Programming Issue 1.5 24 March 2006 Page 3-29 Figure 3.3 Relay Base.
MX4428 MXP Engineering / Technical Manual Document: LT0273 Device Information and Programming Page 3-30 24 March 2006 Issue 1.5 3.14 814SB SOUNDER BASE 3.
Document: LT0273 MX4428 MXP Engineering / Technical Manual Device Information and Programming Issue 1.5 24 March 2006 Page 3-31 3.15 MKII SOUNDER BASE 3.15.1 GENERAL The MkII Sounder Base is a range of detector bases which are designed as low cost warning devices, some of which are loop powered and others are externally powered.
MX4428 MXP Engineering / Technical Manual Document: LT0273 Device Information and Programming Page 3-32 24 March 2006 Issue 1.5 3.16 MIM800 AND MIM801 MINI INPUT MODULES 3.
Document: LT0273 MX4428 MXP Engineering / Technical Manual Device Information and Programming Issue 1.5 24 March 2006 Page 3-33 Maximum input cable length 10m EOL 200 Ω + / - 5%.
MX4428 MXP Engineering / Technical Manual Document: LT0273 Device Information and Programming Page 3-34 24 March 2006 Issue 1.5 For the MIM801 the default value of 15 selects normally closed operation with interrupt on alarm (e.g. for New Zealand callpoints).
Document: LT0273 MX4428 MXP Engineering / Technical Manual Device Information and Programming Issue 1.5 24 March 2006 Page 3-35 3.17 CIM800 CONTACT INPUT MODULE 3.17.1 GENERAL The CIM800 Contact Input Module is suitable for interfacing voltage free contacts, e.
MX4428 MXP Engineering / Technical Manual Document: LT0273 Device Information and Programming Page 3-36 24 March 2006 Issue 1.5 3.17.3 FIELD WIRING CIM800 CONT ACT MODULE CIM800 CONT ACT MODULE CIM800.
Document: LT0273 MX4428 MXP Engineering / Technical Manual Device Information and Programming Issue 1.5 24 March 2006 Page 3-37 Normally Open Parameter Description Default 8 No interrupt Mode 10 Inter.
MX4428 MXP Engineering / Technical Manual Document: LT0273 Device Information and Programming Page 3-38 24 March 2006 Issue 1.5 3.18 CP820 MANUAL CALL POINT 3.18.1 GENERAL The CP820 Manual Call Point consists of a MIM800 mounted on a Break Glass Switch assembly.
Document: LT0273 MX4428 MXP Engineering / Technical Manual Device Information and Programming Issue 1.5 24 March 2006 Page 3-39 3.19 FP0838 / FP0839 MANUAL CALL POINTS 3.19.1 GENERAL The FP0838 and FP0839 Manual Call Points consist of a MIM801 mounted on an 1841 Break Glass Switch assembly.
MX4428 MXP Engineering / Technical Manual Document: LT0273 Device Information and Programming Page 3-40 24 March 2006 Issue 1.5 3.20 DIM800 DETECTOR INPUT MONITOR 3.20.1 GENERAL The DIM800 Detector Input Module is suitabl e for interfacing conventional non-addressable detectors e.
Document: LT0273 MX4428 MXP Engineering / Technical Manual Device Information and Programming Issue 1.5 24 March 2006 Page 3-41 DIM800 DETECTO R INPUT MONITOR L+ L+ L- L- NEXT DEVICE PREVIOUS DEVICE A.
MX4428 MXP Engineering / Technical Manual Document: LT0273 Device Information and Programming Page 3-42 24 March 2006 Issue 1.5 3.20.3 DIM800 DETECTOR COMPATIBILITY Series Model Max Qty External Supply Voltage at DIM 614P Photo Detector 25 20.0V – 28.
Document: LT0273 MX4428 MXP Engineering / Technical Manual Device Information and Programming Issue 1.5 24 March 2006 Page 3-43 3.21 RIM800 RELAY INTERFACE MODULE 3.21.1 GENERAL The RIM800 Relay Interface Module is suitable for relay outputs which require clean voltage free contacts and no supervision.
MX4428 MXP Engineering / Technical Manual Document: LT0273 Device Information and Programming Page 3-44 24 March 2006 Issue 1.5 3.21.4 MX4428 PROGRAMMING OPTIONS - RIM800 The mode selects the control source for the RIM800 output. By default (mode = 4) the output follows the logical relay.
Document: LT0273 MX4428 MXP Engineering / Technical Manual Device Information and Programming Issue 1.5 24 March 2006 Page 3-45 3.22 SNM800 SOUNDER NOTIFICATION MODULE 3.
MX4428 MXP Engineering / Technical Manual Document: LT0273 Device Information and Programming Page 3-46 24 March 2006 Issue 1.5 3.22.3 SNM800 FIELD WIRING SNM800 SOUNDER NOTIFICA TION MODULE L+ L+ L- L- NEXT DEVICE PREVIOUS DEVICE ANALOG LOOP A NALOG LOO P S+ S- R+ R- I+ I- I+ I- Power Supply + - Power to next device 27k 0.
Document: LT0273 MX4428 MXP Engineering / Technical Manual Device Information and Programming Issue 1.5 24 March 2006 Page 3-47 3.23 LPS800 LOOP POWERED SOUNDER MODULE 3.23.1 GENERAL The LPS800 Loop Powered Sounder Module is suitable for 24V DC outputs powered by the MX Loop.
MX4428 MXP Engineering / Technical Manual Document: LT0273 Device Information and Programming Page 3-48 24 March 2006 Issue 1.5 LPS800 LOOP POWERED SOUNDER MODULE L+ L+ L- L- NEXT DEVICE PREVIOUS DEVICE MX LOOP MX LOOP S+ S- R+ R- 22k 0.5W ELD ++ + -- - Figure 3.
Document: LT0273 MX4428 MXP Engineering / Technical Manual Device Information and Programming Issue 1.5 24 March 2006 Page 3-49 3.24 VLC-800MX VESDA LASERCOMPACT 3.24.1 GENERAL The VLC800 is a derivative of the standard VES DA LaserCOMPACT product family, with the primary difference that it communicates directly on the MX loop.
MX4428 MXP Engineering / Technical Manual Document: LT0273 Device Information and Programming Page 3-50 24 March 2006 Issue 1.5 3.24.3 MX4428 PROGRAMMING OPTIONS - VLC800 The only programmable items for the VLC800 are 1. The pre alarm threshold. 2. The source of the remote LED output.
Document: LT0273 MX4428 MXP Engineering / Technical Manual Device Information and Programming Issue 1.5 24 March 2006 Page 3-51 3.25 AVF / RAD / SAD / FLOWSWITCH DELAYS AVF/RAD or SAD or FLOWSWITCH or.
MX4428 MXP Engineering / Technical Manual Document: LT0273 Device Information and Programming Page 3-52 24 March 2006 Issue 1.5 THIS PAGE INTENTIONALLY LEFT BLANK.
Document: LT0273 MX4428 MXP Engineering / Technical Manual Analog Loop Design Considerations Issue 1.5 24 March 2006 Page 4-1 CHAPTER 4 ANALOGUE LOOP DESIGN CONSIDERATIONS.
MX4428 MXP Engineering / Technical Manual Document: LT0273 Analog Loop Design Considerations Page 4-2 24 March 2006 Issue 1.5 4.1 ANALOGUE LOOP CONFIGURATION SELECTION 4.1.1 LINES & LOOPS The interface between the MXP and its addr essable devices requires two wires.
Document: LT0273 MX4428 MXP Engineering / Technical Manual Analog Loop Design Considerations Issue 1.5 24 March 2006 Page 4-3 4.2 ANALOGUE LOOP/LINE LAYOUTS 4.2.1 LINE MODE The MXP is designed to run in LOOP mode only. The dual line mode of the MPR is not supported.
MX4428 MXP Engineering / Technical Manual Document: LT0273 Analog Loop Design Considerations Page 4-4 24 March 2006 Issue 1.5 MXP MX DETECTOR LOOP AL AR +VE +VE -VE -VE L1 L1 L1 L1 L1 M M M M M L2 L2 .
Document: LT0273 MX4428 MXP Engineering / Technical Manual Analog Loop Design Considerations Issue 1.5 24 March 2006 Page 4-5 4.2.3 STAR CONNECTION OF ANALOGUE LINES It is not always necessary to connect addressable systems as loops, esp ecially if an existing conventional detector system is being converted to addressable detector s.
MX4428 MXP Engineering / Technical Manual Document: LT0273 Analog Loop Design Considerations Page 4-6 24 March 2006 Issue 1.5 MXP MX DETECTOR LOOP AL AR +VE +VE -VE -VE S P U R1 S P U R2 S P U R 3 S P.
Document: LT0273 MX4428 MXP Engineering / Technical Manual Analog Loop Design Considerations Issue 1.5 24 March 2006 Page 4-7 ELECTRICAL - Different construction/materials give different REQUIREMENTS AC characterist ics, noise immunity, etc. (ii) CABLE WEI GHT (i.
MX4428 MXP Engineering / Technical Manual Document: LT0273 Analog Loop Design Considerations Page 4-8 24 March 2006 Issue 1.5 4.7 NOISE CONSIDERATIONS Although the MXP loop has been designed for minimum electrical interference, it is still capable of both picking up and generating electrical interference.
Document: LT0273 MX4428 MXP Engineering /Technical Manual MXP Current Consumption Issue 1.5 24 March 2006 Page 5-1 CHAPTER 5 MXP CURRENT CONSUMPTION.
MX4428 MXP Engineering / Technical Manual Document: LT0273 MXP Current Consumption Page 5-2 24 March 2006 Issue 1.5 5.1 THEORY The MXP current consumption is considerably higher than that of the oth er responders (even higher than the MPR, in fact it can be considerably higher than the MPR depending on the sounder load).
Document: LT0273 MX4428 MXP Engineering /Technical Manual MXP Current Consumption Issue 1.5 24 March 2006 Page 5-3 It is of interest to recalculate the current consumption assum ing for example the supply voltage is only 17.0V (the minimum operating voltage of the MXP).
MX4428 MXP Engineering / Technical Manual Document: LT0273 MXP Current Consumption Page 5-4 24 March 2006 Issue 1.5 THIS PAGE INTENTIONALLY LEFT BLANK.
Document: LT0273 MX4428 MXP Engineering / Technical Manual Event Log and Status at MX4428 Issue 1.5 24 March 2006 Page 6-1 CHAPTER 6 EVENT LOG AND STATUS AT MX4428.
F4000 MXP Engineering / Technical Manual Document: LT0273 Event Log and Status at MX4428 Page 6-2 24 March 2006 Issue 1.5 6.1 RETURNED ANALOG VALUES The MXP returns up to 4 different analog values per device - CV, TV, HH, and HL. The following table details what each value means for each device type.
Document: LT0273 MX4428 MXP Engineering / Technical Manual Event Log and Status at MX4428 Issue 1.5 24 March 2006 Page 6-3 6.2 FAULT AND ALARM EVENT LOG The table below lists examples of event log items which are produced at the MX4428 panel. Circuit / point event logging must be enabled to see the events listed below.
F4000 MXP Engineering / Technical Manual Document: LT0273 Event Log and Status at MX4428 Page 6-4 24 March 2006 Issue 1.5 THIS PAGE INTENTIONALLY LEFT BLANK.
Document: LT0273 MX4428 MXP Engineering / Technical Manual MXP Technical Description Issue 1.5 24 March 2006 Page 7-1 CHAPTER 7 MXP TECHNICAL DESCRIPTION.
MX4428 MXP Engineering /Technical Manual Document: LT0273 MXP Technical Description Page 7-2 24 March 2006 Issue 1.5 7.1 GENERAL The MXP has two major functions: (i) To provide an interface to an MX44.
Document: LT0273 MX4428 MXP Engineering / Technical Manual MXP Technical Description Issue 1.5 24 March 2006 Page 7-3 7.2 CIRCUIT DESCRIPTION 7.2.1 BLOCK DIAGRAM A block diagram of the MXP is given in Figure 7.1. The MXP can be divided into 4 sections: (i) The microprocessor and memory.
MX4428 MXP Engineering /Technical Manual Document: LT0273 MXP Technical Description Page 7-4 24 March 2006 Issue 1.5 68302 CPU / Comms Processor RAM 64kb / 256kb FLASH 256kb / 512kB Data / Addre ss W .
Document: LT0273 MX4428 MXP Engineering / Technical Manual MXP Technical Description Issue 1.5 24 March 2006 Page 7-5 (i) +VS This is a switched version of "+V", which is switched OFF when the loop supply falls below the voltage required for correct operation of the MXP.
MX4428 MXP Engineering /Technical Manual Document: LT0273 MXP Technical Description Page 7-6 24 March 2006 Issue 1.5 7.2.3.4 +5V ISO & +5V Batt A second L1 secondary winding is used to produce an 8V supply, This 8 V supply is poorly regulated and may vary from 7.
Document: LT0273 MX4428 MXP Engineering / Technical Manual MXP Technical Description Issue 1.5 24 March 2006 Page 7-7 In response to DISCON IN– going low, the microprocessor outputs a 10 msec pulse .
MX4428 MXP Engineering /Technical Manual Document: LT0273 MXP Technical Description Page 7-8 24 March 2006 Issue 1.5 Figure 7.2 Analog Loop Typical DC Level and Data Waveform 7.2.5.1 Over-Current Protection The current drawn by the analog loop passes through current sense resistors R22 - R26.
Document: LT0273 MX4428 MXP Engineering / Technical Manual MXP Technical Description Issue 1.5 24 March 2006 Page 7-9 7.2.5.2 Data Transmission Each bit transmitted consists of single cycle of a sinewave of one frequency for a ‘0’ and another frequency for a ‘1’.
MX4428 MXP Engineering /Technical Manual Document: LT0273 MXP Technical Description Page 7-10 24 March 2006 Issue 1.5 In the event that there are isolator bases installed, but there is a short on the section o f loop between the MXP and the first (or last) isolator, the MXP will detect the short and drive the loop only from the opposite end.
Document: LT0273 MX4428 MXP Engineering / Technical Manual MXP Technical Description Issue 1.5 24 March 2006 Page 7-11 7.4 MXP LED INDICATIONS The status LED (LD1) on the MXP board indicates the following conditions – Indication Condition 2 quick flashes every 2 seconds The MXP is normal and polled by the MX4428 panel.
MX4428 MXP Engineering /Technical Manual Document: LT0273 MXP Technical Description Page 7-12 24 March 2006 Issue 1.5 7.5 PARTS LIST PART NUMBER. DESCRIPTION QTY/ASSY REF DESIG PA0893 PCB ASSY,1901-213,F4000 MXP RESPONDER CA0001 CAP,CERAMIC,10P,50V 1.
Document: LT0273 MX4428 MXP Engineering / Technical Manual MXP Technical Description Issue 1.5 24 March 2006 Page 7-13 RL0052 RELAY,OMRON G6A-274P-24VDC 2.0000 RL1 RL2 RR0001 RESISTOR,0.6W,1%,50PPM,D2.5mm,P10mm,1E00 1.0000 R84 RR0013 RESISTOR,0.6W,1%,50PPM,D2.
MX4428 MXP Engineering /Technical Manual Document: LT0273 MXP Technical Description Page 7-14 24 March 2006 Issue 1.5 THIS PAGE INTENTIONALLY LEFT BLANK.
Document: LT0273 MX4428 MXP Engineering / Technical Manual MXP Diagnostic Terminal Issue 1.5 24 March 2006 Page 8-1 CHAPTER 8 MXP DIAGNOSTIC TERMINAL.
MX4428 MXP Engineering /Technical Manual Document: LT0273 MXP Diagnostic Terminal Page 8-2 24 March 2006 Issue 1.5 8.1 MXP DIAGNOSTIC TERMINAL OPERATION 8.1.1 INTRODUCTION The MXP provides diagnostic functions via its serial port (J5) with a terminal or PC connected.
Document: LT0273 MX4428 MXP Engineering / Technical Manual MXP Diagnostic Terminal Issue 1.5 24 March 2006 Page 8-3 SPA Adds all points to the list of points to be monitored. SP nnn Adds point nnn to list. P nnn Adds point nnn to list SP nnn mmm Adds points nnn to mmm.
MX4428 MXP Engineering /Technical Manual Document: LT0273 MXP Diagnostic Terminal Page 8-4 24 March 2006 Issue 1.5 RoR=xx gives the rate of rise in ° C/minute. This is the value which is co mpared with the threshold to decide if a rate of rise pre-alarm exists, and the value which is used to “enhance” smoke or CO processing.
Document: LT0273 MX4428 MXP Engineering / Technical Manual MXP Diagnostic Terminal Issue 1.5 24 March 2006 Page 8-5 8.1.4.7 CP820 Manual Callpoint T=165; P= 22; CP=0 CP=xxx gives the raw value received from the callpoint. 8.1.4.8 CIM800 Contact Input Module T=165; P= 23; CIM A= 90, B= 91 CIM A=xxx; B=yyy.
MX4428 MXP Engineering /Technical Manual Document: LT0273 MXP Diagnostic Terminal Page 8-6 24 March 2006 Issue 1.5 8.1.6 ANALOG LOOP DIAGNOSTICS 8.1.6.1 TC Command (Total Counts) This command gives totals of node failures and powerups on the analog loop.
Document: LT0273 MX4428 MXP Engineering / Technical Manual MXP Diagnostic Terminal Issue 1.5 24 March 2006 Page 8-7 8.1.6.4 DP Command (Diagnostic Poll) This command lists all the devices found (irrespective of the MX4428 programming) by issuing a command to each side of the loop (left and right) which request s all devices to identify themselves.
MX4428 MXP Engineering /Technical Manual Document: LT0273 MXP Diagnostic Terminal Page 8-8 24 March 2006 Issue 1.5 >>ca 20 100 Re-address device 20 to 100 ?y Verify OK The MX4428 configuration is not altered by this command.
Document: LT0273 MX4428 MXP Engineering / Technical Manual MXP Diagnostic Terminal Issue 1.5 24 March 2006 Page 8-9 DP r Perform a “diagnostic poll” on responder r. This command initiates a diagnostic poll, similar to that described in sectio n 8.
MX4428 MXP Engineering /Technical Manual Document: LT0273 MXP Diagnostic Terminal Page 8-10 24 March 2006 Issue 1.5 8.2 FLASH PROGRAMMING On occasion, Tyco Safety Products Christchurch may provide a new version of the MXP software. This software is stored in the Flash IC, U2.
Document: LT0273 MX4428 MXP Engineering / Technical Manual MXP Diagnostic Terminal Issue 1.5 24 March 2006 Page 8-11 4 : Flash Information 1 Erasing, wait Erase OK 1 : Erase Entire Flash (all unprotec.
MX4428 MXP Engineering /Technical Manual Document: LT0273 MXP Diagnostic Terminal Page 8-12 24 March 2006 Issue 1.5 13. Check the display on the terminal emulat or to ensure the program runs and the new version is installed. An example of the output on power up is shown belo w.
Document: LT0273 MX4428 MXP Engineering / Technical Manual Device Processing Issue 1.5 24 March 2006 Page 9-1 CHAPTER 9 DEVICE PROCESSING.
MX4428 MXP Engineering / Technical Manual Document: LT0273 MXP Loop Filter Board Page 9-2 24 March 2006 Issue 1.5 9.1 EXPONENTIAL FILTER An “exponential filter” is used to smooth val ues received from all detector types and remove “noise”.
Document: LT0273 MX4428 MXP Engineering / Technical Manual Device Processing Issue 1.5 24 March 2006 Page 9-3 The output of the filter approaches the input with a maximum slope, or maximum step on each sample.
MX4428 MXP Engineering / Technical Manual Document: LT0273 MXP Loop Filter Board Page 9-4 24 March 2006 Issue 1.5 9.3 HEAT PROCESSING 9.3.1 CONVERSION OF DETECTOR READING TO ° C The temperature readings from the detector (814H or the temperature element of an 814PH or 814CH) are returned from input AI1 of the MX ASIC.
Document: LT0273 MX4428 MXP Engineering / Technical Manual Device Processing Issue 1.5 24 March 2006 Page 9-5 Ta b l e Lookup Exponentia l Filter Slower Exponentia l Filter Subtracto r Raw Reading Raw.
MX4428 MXP Engineering / Technical Manual Document: LT0273 MXP Loop Filter Board Page 9-6 24 March 2006 Issue 1.5 9.4 PHOTO PROCESSING 9.4.1 SMARTSENSE PROCESSING The smoke reading of the detector is returned as input AI0 from the device ASIC. Figure 9.
Document: LT0273 MX4428 MXP Engineering / Technical Manual Device Processing Issue 1.5 24 March 2006 Page 9-7 E n h a n c e me n t M u ltip lie r 0 0. 5 1 1. 5 2 2. 5 3 0 5 10 15 Te m pe ra t ure Ra te of R i s e (° C /m i n) Mu lt iplier Pa r a m =1 2 Pa r a m =6 Figure 9.
MX4428 MXP Engineering / Technical Manual Document: LT0273 MXP Loop Filter Board Page 9-8 24 March 2006 Issue 1.5 9.5 CO PROCESSING 9.5.1 CALIBRATION AND TE MPERATURE COMPENSATION The CO reading of the detector is returned as input AI0 of the device ASIC.
Document: LT0273 MX4428 MXP Engineering / Technical Manual Device Processing Issue 1.5 24 March 2006 Page 9-9 9.6 IONISATION PROCESSING The smoke reading of the detector is returned in two parts as inputs AI0 and AI1 of the device ASIC.
MX4428 MXP Engineering / Technical Manual Document: LT0273 MXP Loop Filter Board Page 9-10 24 March 2006 Issue 1.5 9.7 MIM800 / CIM800 / MIM801 PROCESSING The MIM800 and CIM800 return a value which de.
Document: LT0273 MX4428 MXP Engineering / Technical Manual Device Processing Issue 1.5 24 March 2006 Page 9-11 These are designed for the following configuratio ns– Device Mode Contact R EOL R Max W.
MX4428 MXP Engineering / Technical Manual Document: LT0273 MXP Loop Filter Board Page 9-12 24 March 2006 Issue 1.5 9.8 DIM PROCESSING 9.8.1 LOAD GRAPH Figure 9.8 shows the V / I characteristics for the DIM detector terminals, together with the fault and alarm thresholds when using the default parameters.
Document: LT0273 MX4428 MXP Engineering / Technical Manual Device Processing Issue 1.5 24 March 2006 Page 9-13 9.8.4 SUPPLY MONITORING - DIM800 The DIM800 supply is monitored with input AI3 of the device ASIC. If the supply voltage is less than 18V, a SUPPLY FAIL fault is generated.
MX4428 MXP Engineering / Technical Manual Document: LT0273 MXP Loop Filter Board Page 9-14 24 March 2006 Issue 1.5 Both short circuit faults and open circuit f aults will be logged as SUPERVISION FAULT, and relay stuck faults will be logged as CO NTROL CB FAIL.
Document: LT0273 MX4428 MXP Engineering / Technical Manual Device Processing Issue 1.5 24 March 2006 Page 9-15 9.13 FILTER STEP LIMITS Note that Step Limits are always expressed as “Units per 5 seconds”. This differs fr om MPR where heat units are “units per 10 seconds”, but smoke limits are “time to alarm” (the inverse).
MX4428 MXP Engineering / Technical Manual Document: LT0273 MXP Loop Filter Board Page 9-16 24 March 2006 Issue 1.5 9.17 NON LATCHING TEST MODE In this mode no alarms are latched, and all filtering is bypassed, however detector and device LEDs follow the alarm status.
Document: LT0273 MX4428 MXP Engineering / Technical Manual Device Processing Issue 1.5 24 March 2006 Page 9-17 AutoReset Com mission Mode Zone Ala rm Test Syst em test.
MX4428 MXP Engineering / Technical Manual Document: LT0273 MXP Loop Filter Board Page 9-18 24 March 2006 Issue 1.5 9.23 RESET 9.23.1 RESET OF ADDRESSABLE DETECTOR For about 20 seconds after reset is a.
Document: LT0273 MX4428 MXP Engineering / Technical Manual Device Processing Issue 1.5 24 March 2006 Page 9-19 9.24 DEVICE INITIALISATION AND POLLING The following actions are taken for each device when it powers up or when the MX P powers up. One action is performed on (or instead of) each 5 second poll.
MX4428 MXP Engineering / Technical Manual Document: LT0273 MXP Loop Filter Board Page 9-20 24 March 2006 Issue 1.5 9.25 SOFTWARE VERSIONS The following software versions have been released for general use. Version Features 1.03 First full release 1.04 (Limited Release) Fixed failure of photo self test when using fuzzy logic with some detectors.
Document: LT0273 MX4428 MXP Engineering / Technical Manual MXP Loop Filter Board Issue 1.5 24 March 2006 Page 10-1 CHAPTER 10 MXP LOOP FILTER BOARD.
MX4428 MXP Engineering / Technical Manual Document: LT0273 MXP Loop Filter Board Page 10-2 24 March 2006 Issue 1.5 10.1 USE OF MXP LOOP FILTER BOARD Some field problems have occurred with the MXP detector loop picking up interference from adjacent or nearby wiring, resulting in faults and possibly pre alarms.
Document: LT0273 MX4428 MXP Engineering / Technical Manual MXP Loop Filter Board Issue 1.5 24 March 2006 Page 10-3 Note – if you are fitting the board to an MXP in a responder box, you may need to t.
MX4428 MXP Engineering / Technical Manual Document: LT0273 MXP Loop Filter Board Page 10-4 24 March 2006 Issue 1.5 THIS PAGE INTENTIONALLY LEFT BLANK.
Ein wichtiger Punkt beim Kauf des Geräts Tyco MX4428 (oder sogar vor seinem Kauf) ist das durchlesen seiner Bedienungsanleitung. Dies sollten wir wegen ein paar einfacher Gründe machen:
Wenn Sie Tyco MX4428 noch nicht gekauft haben, ist jetzt ein guter Moment, um sich mit den grundliegenden Daten des Produkts bekannt zu machen. Schauen Sie zuerst die ersten Seiten der Anleitung durch, die Sie oben finden. Dort finden Sie die wichtigsten technischen Daten für Tyco MX4428 - auf diese Weise prüfen Sie, ob das Gerät Ihren Wünschen entspricht. Wenn Sie tiefer in die Benutzeranleitung von Tyco MX4428 reinschauen, lernen Sie alle zugänglichen Produktfunktionen kennen, sowie erhalten Informationen über die Nutzung. Die Informationen, die Sie über Tyco MX4428 erhalten, werden Ihnen bestimmt bei der Kaufentscheidung helfen.
Wenn Sie aber schon Tyco MX4428 besitzen, und noch keine Gelegenheit dazu hatten, die Bedienungsanleitung zu lesen, sollten Sie es aufgrund der oben beschriebenen Gründe machen. Sie erfahren dann, ob Sie die zugänglichen Funktionen richtig genutzt haben, aber auch, ob Sie keine Fehler begangen haben, die den Nutzungszeitraum von Tyco MX4428 verkürzen könnten.
Jedoch ist die eine der wichtigsten Rollen, die eine Bedienungsanleitung für den Nutzer spielt, die Hilfe bei der Lösung von Problemen mit Tyco MX4428. Sie finden dort fast immer Troubleshooting, also die am häufigsten auftauchenden Störungen und Mängel bei Tyco MX4428 gemeinsam mit Hinweisen bezüglich der Arten ihrer Lösung. Sogar wenn es Ihnen nicht gelingen sollte das Problem alleine zu bewältigen, die Anleitung zeigt Ihnen die weitere Vorgehensweise – den Kontakt zur Kundenberatung oder dem naheliegenden Service.