Benutzeranleitung / Produktwartung RS400 des Produzenten RuggedCom
Zur Seite of 275
Rugged Operating System (ROS ™ ) v3.5 User Guide For use with: RS400 Release 3.5.0 - June, 2008.
Copyright COPYRIGHT © 2008 RuggedCom Inc. ALL RIGHTS RESERVED Dissemination or reproduction of this document, or evaluation and communication of its contents, is not authorized except where expressly permitted. Violations are liable for damages. All rights reserved, particularly for the purposes of patent application or trademark registratio n.
Table Of Contents RS400 3 ROS™ v3.5 T able Of Content s Table Of Contents .............................................................................................................. ....................... 3 Table Of Figures .....................
Table Of Contents 1.14 DHCP Relay Agent (N/A for RMC30) ...................................................................................... 48 1.15 Syslog .............................................................................................
Table Of Contents RS400 5 ROS™ v3.5 3.2.8 Resetting Ports .............................................................................................................. 10 9 3.3 Troubleshooting .......................................................
Table Of Contents 6.1.7 Forbidden Ports List ...................................................................................................... 171 6.1.8 VLAN-aware and VLAN-unaware operation modes .................................................
Table Of Contents RS400 7 ROS™ v3.5 11 PPP over Modem ................................................................................................................. ..... 221 11.1 PPP over Modem Operation .........................................
Table Of Contents 14.3.4 Changing Values in a Table .......................................................................................... 257 14.3.5 Setting Default Values in a Table ...............................................................
Table Of Figures RS400 9 ROS™ v3.5 T able Of Figures Figure 1: Main Menu With Screen Elements Identified ........................................................................... 1 6 Figure 2: Log in to The Device with a Web Browser ..............
Table Of Figures Figure 48: WIN and TIN Form................................................................................................................. 77 Figure 49: MicroLok Form .................................................................
Table Of Figures RS400 11 ROS™ v3.5 Figure 99: Spanning Tree Menu .................................................................................................. ......... 146 Figure 100: Bridge RSTP Parameters Form ..............................
Table Of Figures Figure 150: Port LLDP Parameters Form .......................................................................................... ... 216 Figure 151: LLDP Global Remote Statistics Form ..................................................
Preface RS400 13 ROS™ v3.5 Preface This manual contains instructions, examples, guidelines, and general theory on how to use the Rugged Operating System (ROS™) management software. Supported Platforms ROS™ has been designed to work on many RuggedCom product hardware platforms.
Preface ROS™ v3.5 14 RS400 • RS400 Installation Guide • RuggedCom Fiber Guide • RuggedCom Wireless Guide • White paper: Rapid Spanning Tree in Industrial Networks Applicable Firmware Revision This guide is applicable to ROS™ software revision v3.
Administration RS400 15 ROS™ v3.5 1 Administration The Administration menu covers the configuration of administrative parameters of both device and network (local services availability, securi ty me.
Administration ROS™ v3.5 16 RS400 1.1.2 The Structure of the User Interface The user interface is organized as a series of menus with an escape to a com mand line interface (CLI) shell.
Administration RS400 17 ROS™ v3.5 Typing a new value after pressing enter always erases the old parameter value. The left and right cursor keys can be used to position the edit point without erasing the old param eter value. The up and down cursor keys can be used to cycle through the next higher and lower values for the parameter.
Administration ROS™ v3.5 18 RS400 get – upload from the switch and download to PC put – upload from PC and download to PC 1.3 The ROS ™ Web Server Interface 1.3.1 Using a Web Browser to Access the Web Interface A web browser uses a secure communications method called Secure Socket Layer (SSL) to encrypt traffic exchanged with its clients.
Administration RS400 19 ROS™ v3.5 Figure 2: Log in to The Device with a Web Browser Enter the “admin” user name and the appropriate password for the admin user, and then click on the “LogIn” button. The switch is shipped with a default administrator password of “admin”.
Administration ROS™ v3.5 20 RS400 Figure 3: Log in to The Device with a Web Browser (secure login banner).
Administration RS400 21 ROS™ v3.5 1.3.2 The Structure of the Web Interface The user interface is organized as a series of linked web pages. The main menu provides the links and allows them to be expanded to display lower level pages for a particular configuration system.
Administration ROS™ v3.5 22 RS400 Figure 5: Parameters Form Example Some menus will require you to create or delete new records of information. 1.3.4 Updating Statistics Displays You may click the refresh button to update statistics displays.
Administration RS400 23 ROS™ v3.5 1.4 Administration Menu The Administration menu provides ability to configure network and switch administratio n parameters.
Administration ROS™ v3.5 24 RS400 Figure 6: Administration Menu.
Administration RS400 25 ROS™ v3.5 1.5 IP Interfaces These parameters provide the ability to configu re IP connection parameters such as address, network, and mask. The user can configure an IP Interface for each subnet (VLAN). One of the interfaces is configured as management interface.
Administration ROS™ v3.5 26 RS400 Figure 8: IP Interfaces Form Note: The IP address and mask configured for managem ent VLAN are not chan ged when resetting all configuration parameters to defaults and will be assigned to def ault VLAN ID of 1. Changes to the IP address take effect immediately.
Administration RS400 27 ROS™ v3.5 DYNAMIC is a common case of dynamically assigned IP address. It switches between BOOTP and DHCP until it gets the response from the relevant server. Must be static for non management interfaces IP Address Synopsis: ###.
Administration ROS™ v3.5 28 RS400 1.6 IP Gateways These parameters provide the ability to configur e gateways. A maximum of 10 gateways can be configured. When both the Destination and Subnet fields ar e both 0.0.0.0 (displayed as blank space), the gateway is a default gateway.
Administration RS400 29 ROS™ v3.5 1.7 IP Services These parameters provide the ability to configur e properties for IP services provided by the device. Figure 10: IP Services Form Inactivity Timeout Synopsis: 1 to 60 or { Disabled } Default: 5 min Specifies when the console will timeout and display the login screen if there is no user activity.
Administration ROS™ v3.5 30 RS400 Server access. DISABLED - disables read and write access to TFTP Server GET ONLY - only allows to read files via TFTP Server ENABLED - allows to read and write file.
Administration RS400 31 ROS™ v3.5 1.8 System Identification The system identification is displayed in the sign-on screen and in the upper left hand corner of all ROS ™ screens. Figure 11: System Identification For m System Name Synopsis: Any 19 characters Default: System Name The system name is displayed in all ROS menu screens.
Administration ROS™ v3.5 32 RS400 1.9 Passwords These parameters provide the ability to configure parameters for authorized and authenticated access to the device services (HMI via Serial Console, Telnet, SSH, RSH, Web Server).
Administration RS400 33 ROS™ v3.5 Guest Username Synopsis: 15 character ascii string Default: guest Related password is in field Guest Password; view only, cannot change settings or run any commands.
Administration ROS™ v3.5 34 RS400 1.10 Time and Date Device time, date and time zone can be set via this form. The device can also be configured to periodically contact an (S)NTP server to correct for drift in the onboard clock. Each RuggedCom unit can act as a unicast SNTP server and/or SNTP client.
Administration RS400 35 ROS™ v3.5 UTC+5:30 (Calcutta, New Delhi), UTC+5:45 (Kathmandu), UTC+6:00 (Almaty, Dhaka), UTC+6:30 (Rangoon), UTC+7:00 (Bangkok, Hanoi), UTC+8:00 (Beijing, Hong Kong) UTC+9:0.
Administration ROS™ v3.5 36 RS400 1.11 SNMP Management ROS supports Simple Network Management Protocol Version 3 (SNMPv3). This protocol provides secure access to devices by a comb ination of authentication and encrypting packets over the network.
Administration RS400 37 ROS™ v3.5 Figure 15: SNMP User Form Name Synopsis: Any 32 characters Default: initial The name of the user. This is the User- based Security Model dependent security ID IP Address Synopsis: ###.
Administration ROS™ v3.5 38 RS400 Priv Key Synopsis: 31 character ascii string Default: The secret encryption key (password) that must be shared with SNMP client 1.11.2 SNMP Security to Group Maps Entries in this table map configuration of security model and security name (user) into a group name, which is used to define an access control policy.
Administration RS400 39 ROS™ v3.5 Default: The user name which is mapped by this entry to the specified group name. Group Synopsis: Any 32 characters Default: The group name to which the security model and name belo ng. This name is used as index to SNMPv3 VACM Access Table.
Administration ROS™ v3.5 40 RS400 Figure 19: SNMP Access Form Group Synopsis: Any 32 characters Default: The group name to which the security model and name belo ng.
Administration RS400 41 ROS™ v3.5 NotifyViewName Synopsis: { noView, V1Mib, allOfMib } Default: noView This parameter identifies the MIB tree(s) to which this entry authorizes access for notifications. If the value is noView, then no access for notifications is granted.
Administration ROS™ v3.5 42 RS400 1.12 RADIUS RADIUS (Remote Authentication Dial In User Service) is used to provide centralized authentication and authorization for network access. ROS assigns a privilege level of Admin, Operator or Guest to a user who present s a valid username and password.
Administration RS400 43 ROS™ v3.5 The vendor specific attribute is used to determine the access level from the server, which ma y be configured at the RADIUS server with following information: • Vendor ID: Ruggedcom Inc.
Administration ROS™ v3.5 44 RS400 1.12.4 Radius Server Configuration Figure 20: RADIUS Server summary Figure 21: RADIUS Server Form Server Synopsis: Any 8 characters Default: Primary This field tells whether this configuration is for a P rimary or a Backup Server IP Address Synopsis: ###.
Administration RS400 45 ROS™ v3.5 Default: The RADIUS server IP Address. Auth UDP Port Synopsis: 1 to 65535 Default: 1812 The authentication UDP Port on RADIUS server. Auth Key Synopsis: 31 character ascii string Default: The authentication key shared with RADIUS server.
Administration ROS™ v3.5 46 RS400 1.13 TACACS+ TACACS+ (Terminal Access Controller Access-C ontrol System Plus) is a TCP-based access control protocol that provides auth entication, authorization and account ing services to routers, network access servers and other networked computing devices via one or more centralized servers.
Administration RS400 47 ROS™ v3.5 Figure 23: TACACS+ Server Form Server Synopsis: Any 8 characters Default: Primary This field tells whether this configuration is for a P rimary or a Backup Server IP Address Synopsis: ###.###.###.### where ### ranges from 0 to 255 Default: The TACACS+ server IP Address.
Administration ROS™ v3.5 48 RS400 1.14 DHCP Relay Agent (N/A for RMC30) DHCP Relay Agent is a device that forwards DHCP packets between clients and servers when they are not on the same physical LAN segment or IP Subnet. The feature is enabled if DHCP Server IP address and set of access ports are configured.
Administration RS400 49 ROS™ v3.5 DHCP Client Ports Synopsis: Any combination of num bers valid for this parameter Default: None This parameter specifies ports where DHCP clients are connected. Examples: All - all ports of the switch can have DHCP clients connected.
Administration ROS™ v3.5 50 RS400 Syslog severity level - {EMERGENCY, ALERT, CRITICAL, ERROR, WARNING, NOTICE, INFORMATIONAL, DEBUGGING}. 1.15.2 Configuring Remote Syslog Client Figure 26: Remote Syslog Client Form UDP Port Synopsis: 1025 to 65535 or { 514 } Default: 514 The local UDP port through which client sends information to server(s).
Administration RS400 51 ROS™ v3.5 Figure 28: Remote Syslog Server Form IP Address Synopsis: ###.###.###.### where ### ranges from 0 to 255 Default: Syslog server IP Address. UDP Port Synopsis: 1025 to 65535 or { 514 } Default: 514 The UDP port number on which remote server listens.
Administration ROS™ v3.5 52 RS400 1.16 Troubleshooting Problem One I have configured the IP address and a gateway. I am pinging the switch but it is not responding. I am sure the switch is receiving the ping because it’s port LEDs are flashing and the statistics menu shows the pings.
Serial Protocols RS400 53 ROS™ v3.5 2 Serial Protocols RuggedCom devices support following serial protocols: • Raw Socket serial encapsulation • Preemptive Raw Socket • TCPModbus (client and server modes) • DNP 3 • Microlok • WIN and TIN • Mirrored Bits 2.
Serial Protocols ROS™ v3.5 54 RS400 • TCP accept one dynamic connection from different IP address • Dynamic connection activity timer controlled • XON/XOFF flow control for permanent connection • ‘Packetization’ trigger based on a full packet, a specific character or upon a timeout for each connection 2.
Serial Protocols RS400 55 ROS™ v3.5 2.2 Serial Protocols Operation 2.2.1 Serial Encapsulation Applications 2.2.1.1 Character Encapsulation (Raw Socket) Character encapsulation is used any time a str eam of characters must be reliably transported across a network.
Serial Protocols ROS™ v3.5 56 RS400 If RuggedServer ™ is used at the host end, it will wait for a request from the host, encapsulate it in an IP Datagram and send it to the remote side. There, the remote RuggedServer ™ will forward the original request to the RTU.
Serial Protocols RS400 57 ROS™ v3.5 2.2.1.4 Preemptive Raw Socket Figure 33: Permanent and Dy namic Master Connection Support Most SCADA protocols are master/slave and s upport only a single master device. Preemptive Raw Socket offers the ability to have a multiple masters communicate to RTUs/IEDs in protocol independent manner.
Serial Protocols ROS™ v3.5 58 RS400 2.2.1.5 Use of Port Redirectors Port redirectors are PC packages that emulat e the existence of communications ports. The redirector software creates and makes available these “virtual” COM ports, providing access to the network via a TCP connection.
Serial Protocols RS400 59 ROS™ v3.5 2.2.2 Modbus Server a nd Client Applications The Modbus Server and Client applications are used to transport Modus requests and responses across IP networks. The Modbus Client application accepts Modbus polls from a master and determines the IP address of the corresponding RTU.
Serial Protocols ROS™ v3.5 60 RS400 Mas t er Cl ient Gateway Serv er Gateway RTU Transm iss ion t im e from Ma ster to Clien t Gatew ay Netw ork tra nsmission time Transm iss ion t im e from Ser ve .
Serial Protocols RS400 61 ROS™ v3.5 an exception to the originator. If sending exceptions has not been enabled, the Server Gateway will not send any response. 2.2.2.2 A Worked Example A network is constructed with two Masters and 48 RTUs on four Server Gateways.
Serial Protocols ROS™ v3.5 62 RS400 2.2.3 DNP 3.0, Microlok, TIN and WIN Applications RuggedServer ™ supports a variety of protocols that specify source and destination addresses. A destination address specifies which device s hould process the data, and the so urce address specifies which device sent the message.
Serial Protocols RS400 63 ROS™ v3.5 2.2.3.2 Address Learning Address Learning for TIN Address learning is implemented for the TIN protocol and learned entries are viewable in Dynamic Device Address Table.
Serial Protocols ROS™ v3.5 64 RS400 All learned addresses will be kept in the Device Address Table until they are active. They will also be saved in non volatile memory and recovered if device reboots, so learning process does not have to be repeated because of, for example, accidental power brakeage.
Serial Protocols RS400 65 ROS™ v3.5 2.2.4 Transport Protocols For supported protocols, with exception of Modbus, either UDP datagram or TCP connection packets can be used to transport protocol data over the IP network. The Modbus data can be transported only using TCP connection, following TCPModbus protocol.
Serial Protocols ROS™ v3.5 66 RS400 2.2.5 Force Half Duplex Mode of Operation A “force half duplex” mode of operation allows us e of extensions that create ech o loops (as optical loop topology that utilizes the RMC20 repeat mode function).
Serial Protocols RS400 67 ROS™ v3.5 2.3 Serial Protocol Configuration and Statistics The Serial Protocols menu is accessible from the main menu Figure 38: Serial Protocols Menu.
Serial Protocols ROS™ v3.5 68 RS400 2.3.1 Serial Ports Figure 39: Serial Ports Table Figure 40: Serial Ports Form.
Serial Protocols RS400 69 ROS™ v3.5 Port Synopsis: 1 to maximum port number Default: 1 The port number as seen on the front plate silkscreen of the switch. Name Synopsis: Any 15 characters Default: Port 1 A descriptive name that may be used to identify the device conected on that port.
Serial Protocols ROS™ v3.5 70 RS400 Default: 0 ms The amount of delay (if any) to insert between t he transmissions of individual messages out the serial port. DSCP Synopsis: 0 to 63 Default: 0 DSCP - Differentiated Services Code Point, to set the DS byte in the IP header.
Serial Protocols RS400 71 ROS™ v3.5 Figure 42: Raw Socket Form Port Synopsis: 1 to maximum port number Default: 1 The port number as seen on the front plate silkscreen of the switch. Pack Char Synopsis: 0 to 255 or { Off } Default: Off The character that can be used to force forwarding of accumulated data to the network.
Serial Protocols ROS™ v3.5 72 RS400 Default: TCP The network transport used to transport protocol data over IP network. Call Dir Synopsis: { In, Out, Both } Default: In Whether to accept an incoming connection, to place an outgoing connection, or to place outgoing connection and wait for incoming (both directions) .
Serial Protocols RS400 73 ROS™ v3.5 2.3.3 Preemptive Raw Socket Figure 43: Preemptive Raw Socket Ta ble Figure 44: Preemptive Raw Socket Form.
Serial Protocols ROS™ v3.5 74 RS400 Port Synopsis: 1 to 4 Default: 1 The port number as seen on the front plate silkscreen of the switch. Pack Char Synopsis: 0 to 255 or { Off } Default: Off The character that can be used to force forwarding of accumulated data to the network.
Serial Protocols RS400 75 ROS™ v3.5 Timeout Synopsis: 10 to 3600 Default: 10 s The time in seconds that is allowed to dynamic mast er to be idle before it's connection is clo sed. The protocolo listens to the socket open to dymamic master, and if no data are received within this time, conneciton will be closed.
Serial Protocols ROS™ v3.5 76 RS400 Default: 1 The port number as seen on the front plate silkscreen of the switch. Response Timer Synopsis: 50 to 10000 Default: 1000 ms The maximum allowable time to wait for the RTU to start to respond.
Serial Protocols RS400 77 ROS™ v3.5 Forward Exceptions Synopsis: { Disabled, Enabled } Default: Enabled When the Master polls for an unconfigured RTU or the remote Modbus Server receives a poll for an RTU which is not configured or is timing out, it returns an exception message.
Serial Protocols ROS™ v3.5 78 RS400 TIN Mode: Synopsis: 1 to 2 Default: 1 TIN Protocol running mode. TIN Transport: Synopsis: { TCP, UDP } Default: UDP The network transport used to transport protocol data over IP network. WIN Transport: Synopsis: { TCP, UDP } Default: UDP The network transport used to transport protocol data over IP network.
Serial Protocols RS400 79 ROS™ v3.5 WIN DSCP Synopsis: 0 to 63 Default: 0 DSCP - Differentiated Services Code Point, to set the DS byte in the IP header. DS byte setting is supported in the egress direction only. TIN DSCP Synopsis: 0 to 63 Default: 0 DSCP - Differentiated Services Code Point, to set the DS byte in the IP header.
Serial Protocols ROS™ v3.5 80 RS400 Default: 0 DSCP - Differentiated Services Code Point, to set the DS byte in the IP header. DS byte setting is supported in the egress direction only. 2.3.8 DNP Figure 50: DNP Form Transport Synopsis: { TCP, UDP } Default: TCP The network transport used to transport protocol data over IP network.
Serial Protocols RS400 81 ROS™ v3.5 Aging Timer Synopsis: 60 to 1000 Default: 300 s The time of communication inactivity after which a learned DNP address is removed from the device address table. Entries in Link Statistics Table with the aged address will be kept until statistics is cleared.
Serial Protocols ROS™ v3.5 82 RS400 Figure 52: Mirrored Bits Form Port Synopsis: 1 to 4 Default: 1 The port number as seen on the front plate silkscreen of the switch. Transport Synopsis: { TCP, UDP } Default: UDP The network transport used to transport protocol data over IP network.
Serial Protocols RS400 83 ROS™ v3.5 For both, outgoing and incoming connections enabled (client or server), this is remote IP address where to place an outgoing TCP connection request or from which to accept calls. Link Stats Synopsis: { Disabled, Enabled } Default: Enabled Enables links statistics collection for protocol.
Serial Protocols ROS™ v3.5 84 RS400 Figure 54: Device Address Form Protocol Synopsis: { ModbusServer, ModbusClient, DNP, WIN, TIN, MicroLok } Default: ModbusServer The serial protocol supported on this serial port. Address Synopsis: Any 31 characters Default: The destination (source) device address.
Serial Protocols RS400 85 ROS™ v3.5 Default: Unknown The serial port to which device is attached. If the device with this address is attached to the serial port of remote host, the value of this parameter is 'Unknown'. Name Synopsis: Any 16 characters Default: The addressed device name.
Serial Protocols ROS™ v3.5 86 RS400 Protocol Synopsis: { TIN } The serial protocol supported on this serial port. Address Synopsis: Any 31 characters The remote device address. Location Synopsis: ###.###.###.### where ### ranges from 0 to 255 The IP Address of the remote host.
Serial Protocols RS400 87 ROS™ v3.5 Figure 58: Links Statistics Form Protocol Synopsis: { None, RawSocket, ModbusServer, ModbusClient, DNP, WIN, TIN, MicroLok } The serial protocol supported by devices that create this link. Local Address Synopsis: Any 27 characters The address of the device connected to the serial port on this device.
Serial Protocols ROS™ v3.5 88 RS400 Figure 59: Connection Statistics Table Remote IP Synopsis: ###.###.###.### where ### ranges from 0 to 255 The remote IP address of the connection. Remote Port Synopsis: 0 to 65535 The remote port number of the connection.
Serial Protocols RS400 89 ROS™ v3.5 Figure 60: Serial Port Statistics Table Port Synopsis: 1 to maximum port number The port number as seen on the front plate silkscreen of the switch. Protocol Synopsis: Any 15 characters The serial protocol supported on this serial port.
Serial Protocols ROS™ v3.5 90 RS400 2.3.15 Clearing Serial Port Statistics This command clears serial ports statistics and links statistics. Figure 61: Clear Serial Port Statistics Form This command clears statistics on one or more serial ports. Ports to clear statistics will be chosen checking out required boxes.
Serial Protocols RS400 91 ROS™ v3.5 2.4 Troubleshooting Problem One I configured a Serial IP to use TCP transport ( in or out connection request direction) but nothing seems to be happening. What is going on? Ensure that an Ethernet port link is up.
.
Ethernet Ports RS400 93 ROS™ v3.5 3 Ethernet Port s ROS ™ Ethernet port control provides you with the following features: • Configuring port physical parameters • Configuring link alarms/traps.
Ethernet Ports ROS™ v3.5 94 RS400 1. Auto-Negotiating links (100Base-TX,1000Base-T,1000Base-X) - auto-negotiation built-in feature (a special flag called Remote Fault Indication is set in the transmitted auto- negotiation signal) 2. 100Base-FX links - Far–End-Fault-Indication (FEFI) is a standard fe ature defined by the IEEE 802.
Ethernet Ports RS400 95 ROS™ v3.5 3.2 Ethernet Ports Configuration and Status The Ethernet Ports menu is accessible from the main menu. Figure 64: Ethernet Ports Menu.
Ethernet Ports ROS™ v3.5 96 RS400 3.2.1 Port Parameters Figure 65: Port Parameters Table Figure 66: Port Parameters Form.
Ethernet Ports RS400 97 ROS™ v3.5 Port Synopsis: 1 to maximum port number Default: 0 The port number as seen on the front plate silkscreen of the switch. Name Synopsis: Any 15 characters Default: Not installed A descriptive name that may be used to identify the device conected on that port.
Ethernet Ports ROS™ v3.5 98 RS400 When the port is half-duplex it is accomplished using 'backpressure' where the switch simulates collisions causing the sending device to retry tr ansmissions according to the Ethernet backoff algorithm.
Ethernet Ports RS400 99 ROS™ v3.5 3.2.2 Port Rate Limiting Figure 67: Port Rate Limiting Table Figure 68: Port Rate Limiting Form Port Synopsis: 1 to maximum port number.
Ethernet Ports ROS™ v3.5 100 RS400 Default: 1 The port number as seen on the front plate silkscreen of the switch. Ingress Limit Synopsis: { Disabled, 128 Kbps, 256 Kbps, 512 Kbps, 1 Mbps, 2 Mbps, 4.
Ethernet Ports RS400 101 ROS™ v3.5 Figure 69: Port Mirroring Form Port Mirroring Synopsis: { Disabled, Enabled } Default: Disabled Enabling port mirroring causes all frames received and transmitted by the source port(s) to be transmitted out of the target port.
Ethernet Ports ROS™ v3.5 102 RS400 3.2.4 Link Detection Options Figure 70: Link Detection Form Fast Link Detection Synopsis: { Off, On, On_withPortGuard } Default: On_withPortGuard This parameter provides system protection aga inst a faulty end device generating an improper link integrity signal.
Ethernet Ports RS400 103 ROS™ v3.5 OFF - Turning this parameter OFF will disable Fast Link Detection completely. The switch will need a longer time to detect a link failure. This will result in a longer network recovery time of up to 2s. This option should only be used if fast link failure detection is not ne eded.
Ethernet Ports ROS™ v3.5 104 RS400 Figure 73: PoE Parameters Form Port Synopsis: 1 to maximum port number Default: 1 The port number as seen on the front plate silkscreen of the switch. Admin Synopsis: { Disabled, Enabled } Default: Enabled This parameter allows to enable or di sable supplying power by the port.
Ethernet Ports RS400 105 ROS™ v3.5 Current Synopsis: 0 to 65535 Supplied current level. 3.2.6 EoVDSL Parameters (when applicable) From the switching functionality point of view Ethernet-over-VDSL (EoVDSL) ports function the same way as 10/100Base-TX Ethernet ports.
Ethernet Ports ROS™ v3.5 106 RS400 Figure 74: Accessing EoVDSL Parameters Figure 75: EoVDSL Parameters Table.
Ethernet Ports RS400 107 ROS™ v3.5 Figure 76: EoVDSL Parameters Form Port Synopsis: 1 to maximum port number Default: Depends on the particular product (3 for RS920L, 7 for RS930L, 9 for RS9XX, etc.) The port number as seen on the front plate silkscreen of the switch.
Ethernet Ports ROS™ v3.5 108 RS400 the given media. If this parameter is set to a fixed value, the system will only try to achieve the specifie d rate. NOTE: depending on the actual physical link, it may not be possible to achieve the configured fixed bit rate.
Ethernet Ports RS400 109 ROS™ v3.5 Name Synopsis: Any 15 characters A descriptive name that may be used to identify the device connected on that port. Link Synopsis: { ----, ----, Down, Up } The port's link status. Speed Synopsis: { ---, 10, 100, 1000 } The port's current speed.
.
Ethernet Statistics RS400 111 ROS™ v3.5 4 Ethernet St atistics ROS ™ Ethernet statistics provides you with the following abilities: • Viewing basic Ethernet statistics • Viewing and clearing d.
Ethernet Statistics ROS™ v3.5 112 RS400 4.1 Viewing Ethernet Statistics This table provides basic Ethernet statistics inf o rmation which is reset periodically, every few seconds. This traffic view is useful when the origin and destination of a traffic flow needs to be determined.
Ethernet Statistics RS400 113 ROS™ v3.5 InPkts Synopsis: 0 to 4294967295 The number of received good packets (Unicast+Multicast+Broadcast) and dropped packets. OutPkts Synopsis: 0 to 4294967295 The number of transmitted good packets. ErrorPkts Synopsis: 0 to 4294967295 The number of any type of erroneous packet.
Ethernet Statistics ROS™ v3.5 114 RS400 4.2 Viewing Ethernet Port Statistics Ethernet port statistics provide a detailed view of the traffic. This is useful when the exact source of error or traffic mix needs to be determined.
Ethernet Statistics RS400 115 ROS™ v3.5 Figure 81: Ethernet Port Statistics Form Port Synopsis: 1 to maximum port number The port number as seen on the front plate silkscreen of the switch.
Ethernet Statistics ROS™ v3.5 116 RS400 InOctets Synopsis: 0 to 18446744073709551615 The number of octets in received good packets (Unicast+Multicast+Broadcast) and d ropped packets. OutOctets Synopsis: 0 to 18446744073709551615 The number of octets on a transmitted good packets.
Ethernet Statistics RS400 117 ROS™ v3.5 4. Packet has invalid CRC. Jabbers Synopsis: 0 to 4294967295 The number of packets which meet all the following conditions: 1.
Ethernet Statistics ROS™ v3.5 118 RS400 OutMulticasts Synopsis: 0 to 18446744073709551615 The number of transmitted Multicast packets. This does not include Broadcast packe ts. OutBroadcasts Synopsis: 0 to 18446744073709551615 The number of transmitted Broadcast packets.
Ethernet Statistics RS400 119 ROS™ v3.5 4.3 Clearing Ethernet Port Statistics Figure 82: Clear Ethernet Port Statistics Form This command clears Ethernet ports statistics for one or more Ethernet ports. Ports will be chosen by checking out required boxes.
Ethernet Statistics ROS™ v3.5 120 RS400 4.4 Remote Monitoring (RMON) The RuggedSwitch ™ Remote Monitor (RMON) package provides the following capabilities: • The ability to collect and view historical statistics in order to review performance and operation of Ethernet ports.
Ethernet Statistics RS400 121 ROS™ v3.5 Figure 84: RMON History Contr ols Form Index Synopsis: 1 to 65535 Default: 1 The index of this RMON History Control record. Port Synopsis: 1 to maximum port number Default: 1 The port number as seen on the front plate silkscreen of the switch.
Ethernet Statistics ROS™ v3.5 122 RS400 Owner Synopsis: Any 127 characters Default: Monitor The owner of this record. It is suggested to start this string with the word 'monitor'.
Ethernet Statistics RS400 123 ROS™ v3.5 Figure 86: RMON History Samples Form Sample Synopsis: 0 to 4294967295 The sample number taken for this history record.
Ethernet Statistics ROS™ v3.5 124 RS400 The number of octets in good packets (Unicast+Multicast+Broadcast) and dropped packets received. InPkts Synopsis: 0 to 4294967295 The number of good packets (Unicast+Multica st+Broadcast) and dropped packets received.
Ethernet Statistics RS400 125 ROS™ v3.5 2. Packet has invalid CRC. Collisions Synopsis: 0 to 4294967295 The number of received packets for which Collision Event has been detected.
Ethernet Statistics ROS™ v3.5 126 RS400 Figure 87: The Alarm Process There are two methods to evaluate a statistic in order to determine wh en to generate an event; these are the delta and absolute methods. For most statistics (such as line errors) it is appropriate to alarm when a rate is exc eeded.
Ethernet Statistics RS400 127 ROS™ v3.5 Figure 89: RMON Alarms Form Index Synopsis: 1 to 65535 Default: 2 The index of this RMON Alarm record. Variable Synopsis: SNMP Object Identifier - up to 39 characters Default: ifOutOctets.2 The SNMP object identifier (OID) of the particular variable to be sampled.
Ethernet Statistics ROS™ v3.5 128 RS400 Default: 11800 A threshold for the sampled variable. When the current sampled variable value is greater than or equal to this threshold, and the value at the last sampling interval was less than this threshold, a single event will be generated.
Ethernet Statistics RS400 129 ROS™ v3.5 corresponding entry in the Event Table, then no association exists. In particular, if this value is zero, no associated event will be generated. Owner Synopsis: Any 127 characters Default: Monitor The owner of this record.
Ethernet Statistics ROS™ v3.5 130 RS400 Figure 91: RMON Events Form Index Synopsis: 1 to 65535 Default: 2 The index of this RMON Event record. Type Synopsis: { none, log, snmpTrap, logAndTrap } Default: logAndTrap The type of notification that the probe will make about this event.
Ethernet Statistics RS400 131 ROS™ v3.5 Owner Synopsis: Any 127 characters Default: Monitor The owner of this event record. It is suggested to start this string with the word 'monitor'. 4.6 RMON Event Log Event logs for a particular record in the RMON Events Table can be viewed by selecting a particular record and view option.
Ethernet Statistics ROS™ v3.5 132 RS400 Figure 93: RMON Event Log Form Log Synopsis: 0 to 4294967295 The index (log) taken for this log record. LogTime Synopsis: DDDD days, HH:MM:SS The system elapsed time when this log was created. LogDescription Synopsis: Any 49 characters The description of the event that activated this log entry.
Spanning Tree RS400 133 ROS™ v3.5 5 S p anning T ree The RuggedSwitch™ family of Ethernet switches provide the latest in IEEE standard Spanning Tree functionality, including: • Industry standard support of Rapid Spanning Tree (802.1D-2004), which features a compatibility mode with legacy STP (802.
Spanning Tree ROS™ v3.5 134 RS400 • RSTP offers edge port recognition, allowing ports at the edge of the network to forward frames immediately after activation while at the same time protecting them against lo ops. While providing much better performance than STP, IEEE 802.
Spanning Tree RS400 135 ROS™ v3.5 The learning state is entered when the port is preparing to play an active part in the network. The port learns addresses in this state but does not particip ate in frame transfer. In a network of RSTP bridges the time spent in this state is usu ally quite short.
Spanning Tree ROS™ v3.5 136 RS400 the bridge and will become active if that port fails. The ba ckup port does not participate in the network. 5.1.2 Edge Ports A port may be designated an edge port if it is directly connected to an end station.
Spanning Tree RS400 137 ROS™ v3.5 when the designer is not too concerned with t he resultant topology as long as connectivity is assured. Manual configuration is useful when the exact topology of the network must be predictable under all circumstances.
Spanning Tree ROS™ v3.5 138 RS400 5.2 MSTP Operation The Multiple Spanning Tree (MST) algorithm and prot ocol provide greater control and flexibility than RSTP and legacy STP. MSTP (Multiple Spanning Tree Protocol) is an extension of RST P whereby multiple spanning trees may be maintained on the same bridged network.
Spanning Tree RS400 139 ROS™ v3.5 Each MSTI has a topology that is independent of ev ery other. Data traffic originating from the same source and bound to the same destination but on different VLANs on different MSTIs may therefore travel a different path across the network.
Spanning Tree ROS™ v3.5 140 RS400 5.2.2.2 Port Roles: Each port on an MST bridge may have more than one role depending on the number and topology of spanning tree instances defined on the port. CIST Port Roles • The Root Port provides the minimum cost path from the bridge to the CIST Root via the CIST Regional Root.
Spanning Tree RS400 141 ROS™ v3.5 5.2.3 Benefits of MSTP Despite the fact that MSTP is configured by default to arrive automatically at a spanning tree solution for each configured MSTI, advantages may be gained from influencing the topology of MSTIs in an MST region.
Spanning Tree ROS™ v3.5 142 RS400 5.2.4 Implementing MS TP on a Bridged Network It is recommended that the configuration of MSTP on a network proceed in the sequence outlined below. Naturally, it is also recommended that network analysis and plannin g inform the steps of configuring the VLAN and MSTP parameters in particular.
Spanning Tree RS400 143 ROS™ v3.5 5.3 RSTP Applications 5.3.1 RSTP in Structure d Wiring Configurations RSTP allows you to construct structured wiring systems in which connectivity is maintained in the event of link failures.
Spanning Tree ROS™ v3.5 144 RS400 notifications in the network. Ports with half duplex/shared media restrictions require special attention in order to guarantee that they do not cause extended failover/recovery times. 4. Choose the root bridge and backup root bridge carefully.
Spanning Tree RS400 145 ROS™ v3.5 Design Considerations for RSTP in Ring Backbone Configurati ons 1. Select the design parameters for the network. What are the requirements for robustness and netwo rk failover/recovery times? Typically, ring backbones are chosen to provide cost effective but robust network designs.
Spanning Tree ROS™ v3.5 146 RS400 5.4 Spanning Tree Configuration The Spanning Tree menu is accessible from the main menu. Figure 99: Spanning Tree Menu.
Spanning Tree RS400 147 ROS™ v3.5 5.4.1 Bridge RSTP Parameters Figure 100: Bridge RSTP Parameters Form State Synopsis: { Disabled, Enabled } Default: Enabled Enable STP/RSTP/MSTP for the bridge globally. Note that for STP/RSTP/MSTP to be enabled on a particular port, it must be enabled both globally per port.
Spanning Tree ROS™ v3.5 148 RS400 Default: On Enable/disable RuggedCom proprietary eRSTP (enhanced RSTP) enhancements Bridge Priority Synopsis: { 0, 4096, 8192, 12288, 16384, 20480, 24576, 2867 2, 3.
Spanning Tree RS400 149 ROS™ v3.5 every switch that propagates the BPDU. If the maximum number of hops inside the region exceeds the configured maximum, BPDUs may be discarded due to their time-to-live information. Cost Style Synopsis: { STP (16 bit), RSTP (32 bit) } Default: STP (16 bit) This parameter selects the style of link cost s to employ.
Spanning Tree ROS™ v3.5 150 RS400 5.4.2 Port RSTP Parameters Figure 101: Port RSTP Parameter Table Figure 102: Port RSTP Parameter Form Port(s) Synopsis: Any combination of num bers valid for this parameter The port number as seen on the front plate silkscreen of the switch (or a list of ports, if aggregated in a port trunk).
Spanning Tree RS400 151 ROS™ v3.5 Enabled Synopsis: { Disabled, Enabled } Default: Enabled Enabling STP activates the STP or RSTP protocol for this port per the configuration in the STP Configuration menu. STP may be disabled for the port ONLY if the port does not attach to an STP enabled bridge in any way.
Spanning Tree ROS™ v3.5 152 RS400 This protocol is automatically turned off in sit uations where multiple STP bridges communicate over a shared (non point-to-point) LAN. The bridge will automatically take point-to-point to be true when the link is found to be operating full duplex.
Spanning Tree RS400 153 ROS™ v3.5 5.4.3 MST Region Identifier Figure 103: MST Region Identifier Table Name Synopsis: Any 32 characters Default: 00-0A-DC-00-41-74 Variable length text string. You must configure an identical region name on all switches you want to be in the same MST region.
Spanning Tree ROS™ v3.5 154 RS400 5.4.4 Bridge MSTI Parameters Figure 104: Bridge MSTI Parameters Instance ID Synopsis: 0 to 16 Default: 1 The Instance ID refers to the MSTI (Multiple Spanning Tree Instance) ID. Specify an Instance ID and select GET in order to load the parameters of the page corresponding to the selected MSTI.
Spanning Tree RS400 155 ROS™ v3.5 5.4.5 Port MSTI Parameters Figure 105: Port MSTI Parameter Table Figure 106: Port MSTI Parameter Form Instance ID Synopsis: 0 to 16 Default: 1.
Spanning Tree ROS™ v3.5 156 RS400 The Instance ID refers to the MSTI (Multiple Spanning Tree Instance) ID. Specify an Instance ID and select GET in order to load parameters corresponding to the select ed MSTI. Changes to parameters that are subsequently applied will apply to the selected Instance ID.
Spanning Tree RS400 157 ROS™ v3.5 5.5 Spanning Tree Statistics 5.5.1 Bridge RSTP Statistics Figure 107: Bridge RSTP Statistics F orm Bridge Status Synopsis: { <empty string>, Designated Bridge, Not Designated For Any LAN, Root Bridge } Spanning Tree status of the bridge.
Spanning Tree ROS™ v3.5 158 RS400 Root Port Synopsis: 0 to 65535 or { <empty string>} If the bridge is designated, this is the port that pr ovides connectivity towards the root bridge of the network. Root Path Cost Synopsis: 0 to 4294967295 Total cost of the path to the root bridge, composed of the sum of the costs of each link in the path.
Spanning Tree RS400 159 ROS™ v3.5 5.5.2 Port RSTP Statistics Figure 108: Port RSTP Statistics Table.
Spanning Tree ROS™ v3.5 160 RS400 Figure 109: Bridge RSTP Parameters Form Port(s) Synopsis: Any combination of num bers valid for this parameter The port number as seen on the front plate silkscreen of the switch (or a list of ports, if aggregated in a port trunk).
Spanning Tree RS400 161 ROS™ v3.5 Role of this port in Spanning Tree. This may be one of the following: Designated - The port is designated for (i.e. carries traffic towards the root for) the LAN it is connected to. Root - The single port on the bridge, which provides connectivity towards the root bridge.
Spanning Tree ROS™ v3.5 162 RS400 5.5.3 Bridge MSTI Statistics Figure 110: Bridge MSTI Statistics Table Instance ID Synopsis: 0 to 16 Default: 1 The Instance ID refers to the MSTI (Multiple Spanning Tree Instance) ID. Specify an Instance ID and select GET in order to load parameters corresponding to the select ed MSTI.
Spanning Tree RS400 163 ROS™ v3.5 Root Port Synopsis: 0 to 65535 or { <empty string>} If the bridge is designated, this is the port that pr ovides connectivity towards the root bridge of the network. Root Path Cost Synopsis: 0 to 4294967295 Total cost of the path to the root bridge composed of the sum of the costs of each lin k in the path.
Spanning Tree ROS™ v3.5 164 RS400 Figure 112: Port MSTI Statistics Form Instance ID Synopsis: 1 to 16 Default: 1 The Instance ID refers to the MSTI (Multiple Spanning Tree Instance) ID. Specify an Instance ID and select GET in order to load parameters corresponding to the select ed MSTI.
Spanning Tree RS400 165 ROS™ v3.5 Role Synopsis: { <empty string>, Root, Designated, Alternate, Backup, Master } Role of this port in Spanning Tree. This may be one of the following: Designated - The port is designated for (i.e. carries traffic towards the root for) the LAN it is connected to.
Spanning Tree ROS™ v3.5 166 RS400 5.6 Troubleshooting Problem One When I connect a new port the network locks up. The port status LEDs are flashing madly. Occasionally, the network seems to experience a lot of flooding. All the ports seem to experience significant traffic.
Spanning Tree RS400 167 ROS™ v3.5 Problem Three When I test your switch by deliberately breaking a link, it takes a long time before I can poll devices past the switch.
Spanning Tree ROS™ v3.5 168 RS400 If the controller fails around the time of a link outage then there is the remote possibility that frame disordering or duplication may be the cause of the problem. Try setting the root port of the failing controller’s bridg e to STP.
VLANs RS400 169 ROS™ v3.5 6 VLANs ROS ™ provides the following VLAN features: • Support for up to 64 VLANs • Support for up to 15 VLANs • Configurable port native VLAN. • Port modes of operation tailored to edge devices (such as a PC or IED) and to network switch interconnections.
VLANs ROS™ v3.5 170 RS400 Changing the management VLAN can be used to restrict management access to a specific set of users. 6.1.5 Edge and Trunk Port Types Each port can be configured to take on a type of Edge or Trunk.
VLANs RS400 171 ROS™ v3.5 Frame received This doesn’t depend on ingress port ‘s VLAN configuration parameters Untagged Priority Tagged (VID=0) Tagged (valid VID) VLAN the frame associated with P.
VLANs ROS™ v3.5 172 RS400 To ensure the required operation in any possible ap plication scenario and provide full compatibility with legacy (VLAN-unaware) devices RuggedSwitch TM can be configured to work in a VLAN-unaware mode.
VLANs RS400 173 ROS™ v3.5 End Node C GVRP Unaw are End Node E GVRP Unaware PVID - 7 Port A 1 –GVR P awar e Adv. only Port A2 – Edge Port Core Switch B Edge Swit ch A Port B1 – GVRP aw are Adv. & Learn Port B2 – GVRP aware Adv. & Learn Port C1 – GVRP aware Adv.
VLANs ROS™ v3.5 174 RS400 ingress edge port. This means that traffic from an individual customer is tagged with his unique VID and, thus, segregated from other customers’ traffic. Within the service provider network, switching is based on the VID in the outer tag.
VLANs RS400 175 ROS™ v3.5 6.2 VLAN Applications 6.2.1 Traffic Domain Isolation VLANs are most often used for their ability to restrict traffic flows between groups of devices. Unnecessary broadcast traffic can be restricted to the VLAN that requires it.
VLANs ROS™ v3.5 176 RS400 6.2.2 Administrative Convenience VLANs enable equipment moves to be handled by software reconfiguration instead the alternative, cable management. When a host’s physi cal location is changed, its co nnection point is often changed as well.
VLANs RS400 177 ROS™ v3.5 6.3 VLAN Configuration The Virtual LANs menu is accessible from the main menu. Figure 117: Virtual LANs Menu 6.3.1 Global VLAN Parameters Figure 118: Global VLAN Parameters Form VLAN-aware Synopsis: { No, Yes } Default: Yes Set either VLAN-aware or VLAN-unaware mode of operation.
VLANs ROS™ v3.5 178 RS400 • NOTE: Do not attempt to change the “VLAN-aware” parameter of the managed switch by applying a configuration (.CSV) file update. Configuration file updates are used to apply “bulk changes” to the current configuration of a switch.
VLANs RS400 179 ROS™ v3.5 The VLAN Identifier is used to identify the VLAN in tagged Ethernet frames according to IEEE 802.1Q. VLAN Name Synopsis: Any 19 characters Default: The VLAN name provides a description of the VL AN purpose (for example, Engineering VLAN).
VLANs ROS™ v3.5 180 RS400 6.3.3 Port VLAN Parameters Figure 121: Port VLAN Parameters Table Figure 122: Port VLAN Parameters Form.
VLANs RS400 181 ROS™ v3.5 Port(s) Synopsis: Any combination of num bers valid for this parameter The port number as seen on the front plate silkscreen of the switch (or a list of ports, if aggregated in a port trunk). Type Synopsis: {Edge, Trunk} Default: Edge This parameter specifies how the port determines its membership in VLANs.
VLANs ROS™ v3.5 182 RS400 6.3.4 VLAN Summary There are actually 3 ways VLAN can be created in the switch: Explicit VLAN is explicitly configured in the Static VLANs list. Implicit VLAN ID is a parameter required for different feature configurations (e.
VLANs RS400 183 ROS™ v3.5 6.4 Troubleshooting Problem One I don’t need VLANs at all. How do I turn them off? Simply leave all ports set to type “Edge” and leave the native VLAN set to 1. This is the default configuration for the switch. Problem Two I have added two VLANs 2 and 3.
.
Classes of Service RS400 185 ROS™ v3.5 7 Classes of Service ROS ™ CoS provides the following features: • Support for 4 Classes of Service • Ability to prioritize traffic by ingress port. • Ability to prioritize traffic by the priority field in 802.
Classes of Service ROS™ v3.5 186 RS400 Frame tagged ? Received Frame MAC Address in Static MAC Ad dress Table? Use Port Default CoS To CoS Queues of Egress Ports IP Fr ame ? Y Y No Y No No Use TOS D.
Classes of Service RS400 187 ROS™ v3.5 7.2 CoS Configuration The Classes Of Service menu is accessible from the main menu. Figure 125: Classes Of S ervice Menu 7.
Classes of Service ROS™ v3.5 188 RS400 This parameter specifies weighting algorithm for transmitting different priority CoS frames. Examples: 8:4:2:1 - 8 Critical, 4 High, 2 Medi um and 1 Normal priority CoS frame Strict - lower priority CoS frames will be only transmitted after all higher priority CoS frames have been transmitted.
Classes of Service RS400 189 ROS™ v3.5 Figure 128: Port CoS Parameter For m Port(s) Synopsis: 1 to maximum port number The port number as seen on the front plate silkscreen of the switch (or a list of ports, if aggregated in a port trunk).
Classes of Service ROS™ v3.5 190 RS400 Figure 130: Priority to CoS Mapping Form Priority Synopsis: 0 to 7 Default: 0 This is a value of the IEEE 802.1p priority. CoS Synopsis: { Normal, Medium, High, Crit } Default: Normal This is a CoS assigned to received tagged frames with the specified IEEE 802.
Classes of Service RS400 191 ROS™ v3.5 7.2.4 DSCP to CoS Mapping Figure 131: TOS DSCP to CoS Mapping Table Figure 132: TOS DSCP to CoS Mapping Form DSCP Synopsis: 0 to 63 Default: 0.
Classes of Service ROS™ v3.5 192 RS400 This is a Differentiated Services Code Point (DSCP) - a value of the 6 bit DiffServ field in the Type-Of-Service (TOS) field of the IP header. CoS Synopsis: { Normal, Medium, High, Crit } Default: Normal This is a Class of Service assigned to received frames with the specified DSCP.
Classes of Service RS400 193 ROS™ v3.5 Figure 134: CoS Access Priorities Fo rm Port(s) Synopsis: Any combination of num bers valid for this parameter The port number as seen on the front plate silkscreen of the switch (or a list of ports, if aggregated in a port trunk).
.
Multicast Filtering RS400 195 ROS™ v3.5 8 Multicast Filtering ROS ™ accomplishes Multicast Filtering through the following ways: 1. Static Multicast Groups 2.
Multicast Filtering ROS™ v3.5 196 RS400 Multicast Router P1 C1 C2 C3 C4 M1 M2 Membership Query M1 Membership Report Membersh ip Quer y M2 Membership Report Figure 135: IGMP Operation Example 1 In th.
Multicast Filtering RS400 197 ROS™ v3.5 Passive Mode When such a switch is used in a network with a multicast router , it can be configured to run Passive IGMP. This mode prevents the switch from sending the queries that can confuse the router causing it to stop issuing IGMP queries.
Multicast Filtering ROS™ v3.5 198 RS400 If RSTP detects change in the netw ork topology, IGMP will take some actions to avoid loss of multicast connectivity and reduce network convergence time: • The switch will immedia tely issue IGMP queries (if in IGMP Active mode) to obtain potential new group membership information.
Multicast Filtering RS400 199 ROS™ v3.5 Processing Leaves When host C1 decides to leave a multicast group it will issue a leave request to the switch. The switch will poll the port to determine if C1 is the last member of the group on that port. If C1 is the last (or only) member, the group will immediately be pruned from the port.
Multicast Filtering ROS™ v3.5 200 RS400 8.2 Multicast Filtering Configuration and Status The Multicast Filtering menu is available from the main menu. Figure 137: Multicast Filtering Menu 8.2.1 Configuring IGMP Parameters Note that the activation of IGMP on a per-VLAN basis is configured using Static VLANs.
Multicast Filtering RS400 201 ROS™ v3.5 Mode Synopsis: { Passive, Active } Default: Passive Specifies IGMP mode: PASSIVE - the switch passively snoops IGMP traffic and never sends IGMP queries ACTIVE - the switch generates IGMP queries, if no queries from a better candidate for being the querier are detected for a while.
Multicast Filtering ROS™ v3.5 202 RS400 8.2.2 Configuring Static Multicast Groups Figure 139: Static Multicast Groups Table Figure 140: Static Multicast Group F orm MAC Address Synopsis: ##-##-##-##-##-## where ## ranges 0 to FF Default: 00-00-00-00-00-00 Multicast group MAC address.
Multicast Filtering RS400 203 ROS™ v3.5 Synopsis: { Normal, Medium, High, Crit } Default: Normal Specifies what Class Of Service is assigned to the multicast group frames Ports Synopsis: Any combination of num bers valid for this parameter Default: None Ports to which the multicast group traffic is forwarded.
Multicast Filtering ROS™ v3.5 204 RS400 8.3 Troubleshooting Problem One When I start a multicast traffic feed it is always distributed to all members of the VLAN. Is IGMP enabled for the VLAN? Multicasts will be distributed to all members of the VLAN unless IGMP is enabled.
Multicast Filtering RS400 205 ROS™ v3.5 Problem Six I connect or disconnect some switch ports and multicast goes everywhere. Is IGM P broken? No, it may be a proper switch behavior.
.
MAC Address Tables RS400 207 ROS™ v3.5 9 MAC Address T a bles ROS ™ MAC address table management provides you with the following features: • Viewing learned MAC addresses • Purging MAC Address.
MAC Address Tables ROS™ v3.5 208 RS400 9.1 Viewing MAC Addresses Figure 143: Address Tab le MAC Address Synopsis: ##-##-##-##-##-## where ## ranges 0 to FF MAC address learned by the switch. VID Synopsis: 0 to 65535 VLAN Identifier of the VLAN upon which the MAC address operates.
MAC Address Tables RS400 209 ROS™ v3.5 Specifies what Class Of Service is assigned to frames carrying this address as source or destination address 9.
MAC Address Tables ROS™ v3.5 210 RS400 Figure 145: Static MAC Address Table Figure 146: Static MAC Addre ss Form MAC Address Synopsis: ##-##-##-##-##-## where ## ranges 0 to FF Default: 00-00-00-00-00-00 MAC address that is to be statically configured.
MAC Address Tables RS400 211 ROS™ v3.5 Default: 1 Enter the port number upon which the device with this address is locat ed. If the port should be auto-learned, set this parameter to 'Learn' CoS Synopsis: { Normal, Medium, High, Crit } Default: Normal Set this parameter to prioritize the traffic for spe cified address.
.
Network Discovery RS400 213 ROS™ v3.5 10 Network Discovery Network Discovery is based on LLDP (Link Layer Discovery Protocol) as defined by the IEEE 802.1AB standard. This feature provides the ability to: • Enable LLDP per device and per port • View LLDP statistics • View neighbor information • Report LLDP data via SNMP 10.
Network Discovery ROS™ v3.5 214 RS400 10.2 Network Discovery Menu The Network Discovery menu provides the ability to configure the switch, globally and per port, to exchange LLDP information with neighbors, and to view LLDP information and statistics.
Network Discovery RS400 215 ROS™ v3.5 10.2.1 Global LLDP Parameters Figure 148: Global LLDP Parameters Form State Synopsis: { Disabled, Enabled } Default: Enabled Enables LLDP protocol. Note that LLDP is enabled on a port when LLDP is enabled globally and along with enabling per port setting in Port LLDP Parameters menu.
Network Discovery ROS™ v3.5 216 RS400 changed. The recommended value is set according to the following formula: 1 <= txDelay <= (0.25 * Tx Interval) 10.
Network Discovery RS400 217 ROS™ v3.5 Port Synopsis: 1 to 9 Default: 1 The port number as seen on the front plate silkscreen of the switch. Admin Status Synopsis: { rxTx, txOnly, rxOnly, Disabled } Default: rxTx rxTx: the local LLDP agent can both transmit and receive LLDP frames through the port.
Network Discovery ROS™ v3.5 218 RS400 Drops Synopsis: 0 to 4294967295 The number of times an entry was deleted from LLDP Neighbor Information Table because the information timeliness interval has expired. Ageouts Synopsis: 0 to 4294967295 The number of all TLVs discarded 10.
Network Discovery RS400 219 ROS™ v3.5 10.2.5 LLDP Statistics Figure 153: LLDP Statistics Table Port Synopsis: 1 to 9 The port number as seen on the front plate silkscreen of the switch.
.
PPP over Modem RS400 221 ROS™ v3.5 11 PPP over Modem ROS ™ PPP over Modem provides you with the following features: • Configuring PPP network parameters • Configuring PAP/CHAP authentication • Configuring PPP clients • Viewing the status of the PPP/Modem port • Resetting the port 11.
PPP over Modem ROS™ v3.5 222 RS400 On the RuggedCom device : • At least one username and password for PAP or CHAP to authenticate against. • A server name, if CHAP authentication is used • An .
PPP over Modem RS400 223 ROS™ v3.5 On the dial-in client: • The telephone number to dial in order to reach the RuggedCom device • The authentication protocol (PAP or CHAP) to use and a username and password that will be accepted by the device.
PPP over Modem ROS™ v3.5 224 RS400 • After the PPP link establishment phase is complete, the RuggedCom device sends a challenge message to the client.
PPP over Modem RS400 225 ROS™ v3.5 11.2 PPP Configuration The PPP Configuration menu is accessible from the main menu. Figure 156: PPP Configuration Menu.
PPP over Modem ROS™ v3.5 226 RS400 11.2.1 Modem Settings Figure 157: PPP Modem Settings Form Country Code Synopsis: { Australia, Austria, Belgium, Brazil, China, Denmark, Finland, France, Germ any, .
PPP over Modem RS400 227 ROS™ v3.5 11.2.2 PPP Control Figure 158: PPP Control Form PPP Status Synopsis: { Disabled, Enabled } Default: Disabled Whether PPP is disabled or enabled. Local IP Address Synopsis: ###.###.###.### where ### ranges from 0 to 255 Default: 192.
PPP over Modem ROS™ v3.5 228 RS400 Server Name Synopsis: Any 15 characters Default: Server This string determines the server name and is used for CHAP and when authenticating ourselves to the caller using PAP.
PPP over Modem RS400 229 ROS™ v3.5 11.2.3 PPP Users Up to 10 user/password combinations can be in this table. Figure 159: PPP Users Table Figure 160: PPP Users Form User Name Synopsis: Any 15 charac.
PPP over Modem ROS™ v3.5 230 RS400 Password Synopsis: Any 9 characters Default: The password associated with a spe cific username. Auth Type Synopsis: { CHAP Only, PAP Only, Both PAP/CHAP, No Authentication } Default: CHAP Only Determines whether the username/password applies to PAP, CHAP or both.
PPP over Modem RS400 231 ROS™ v3.5 11.2.4 PPP Statistics Figure 161: PPP Statistics Form Current Status Synopsis: { Disabled, Waiting for a call, Authenticating user, Call in progress, Stoppin g call, No Dialtone, Number Busy, No Answer } The current port status.
PPP over Modem ROS™ v3.5 232 RS400 Tx LCP Packets Synopsis: 0 to 4294967295 The number of packets LCP transmitted on the connection. Authentication Synopsis: { ,None, PAP, PAP Failure, CHAP, CHAP Failure } The current authentication status. Connected User Synopsis: Any 15 characters The name of the currently connected user.
PPP over Modem RS400 233 ROS™ v3.5 11.2.5 Clearing PPP Statistics Figure 162: Clear PPP Statistics Form 11.2.6 Resetting PPP Resetting PPP will immediately clear the modem call.
PPP over Modem ROS™ v3.5 234 RS400 11.3 Troubleshooting Problem One My PC is calling the RuggedCom device but the call never connects. It is important to discriminate between the call connecting (i.e. the modem answering the ca ll) and the PPP session connecting (i.
PPP over Modem RS400 235 ROS™ v3.5 If you are sure the client has installed the PPP link as default gateway, is the client otherwise connected to a LAN? If the client is connected to a LAN and the best route is to the LAN, the PPP link will not be used.
.
Diagnostics RS400 237 ROS™ v3.5 12 Diagnostics ROS ™ provides the following diagnostics features: • Alarm System to view and clear alarms • Viewing and clearing the system log • Viewing CPU .
Diagnostics ROS™ v3.5 238 RS400 12.1.1 Active Alarms Active alarms are ongoing. They signify states of operation that are not in accordance with normal operation. Examples of active alarms include links that should be up but are not or error rates that are continuously exceeding a certain threshold.
Diagnostics RS400 239 ROS™ v3.5 ERROR - Device has a re coverable problem that does not se riously affect operation WARNING - Possibly serious p roblem a ffecting overall system operation NOTIFY - Condition detected that is not expected or n ot allowed INFO - Event which is a part of normal oper ation, e.
Diagnostics ROS™ v3.5 240 RS400 CPU Usage Synopsis: 0 to 100 The percentage of available CPU cycles used for device operation as measured over the last second. RAM Total Synopsis: 0 to 4294967295 The total number of bytes of RAM in the system. RAM Available Synopsis: 0 to 4294967295 The total number of bytes of RAM still available.
Diagnostics RS400 241 ROS™ v3.5 12.3 Viewing and Clearing the System Log The system log records various events including reboots, user sign-in s, alarms and configuration saves. Figure 168: Viewing the System Log The system log will continue to accumulate information until becomes full.
Diagnostics ROS™ v3.5 242 RS400 12.4 Viewing Product Information Figure 169: Product Information Form MAC Address Synopsis: ##-##-##-##-##-## where ## ranges 0 to FF Shows the unique MAC address of the device Order Code Synopsis: Any 31 characters Shows the order code of the device.
Diagnostics RS400 243 ROS™ v3.5 RS900 (v2, 40-00-0066), RS900 (v2, 40-00-0067) } Shows the type, part number, and revision level of the hardware 12.5 Loading Factory Default Configuration The Load F.
Diagnostics ROS™ v3.5 244 RS400 Figure 171: Reset Dev ice Dialog.
Using the CLI Shell RS400 245 ROS™ v3.5 13 Using the CLI Shell ROS ™ Command Line Interface (CLI) support allows: • Executing commands from CLI Shell • Executing commands remotely using RSH .
Using the CLI Shell ROS™ v3.5 246 RS400 Please note that this chapter describes only the most useful of the above commands. 13.2.1 Getting Help for a Command Help related to the usage of a particular command may be obtained by e ntering “help command name <CR>” at the shell prompt.
Using the CLI Shell RS400 247 ROS™ v3.5 Viewing and Clearing Log Files The crashlog.txt and syslog.txt files contain h istorical information about events that have occurred.
Using the CLI Shell ROS™ v3.5 248 RS400 Figure 175: Displayi ng Trace settings Enabling Trace Tracing can be enabled on a per subsystem basis. Obtain detailed information about individual subsystems by entering “trace subsystem_name ?<CR>”.
Using the CLI Shell RS400 249 ROS™ v3.5 Starting Trace To start trace enter “trace<CR>”. All historical trace messages may be displayed using “trace noclear<CR>”. Since this may include many messages, it may be more desirable to use the “trace clear<CR>” command instead.
Using the CLI Shell ROS™ v3.5 250 RS400 The access level selected must support the given command. Any output from the command will be returned to the workstation su bmitting the command. Commands that start interactive dialogs (such as trace) cannot be used.
Upgrading Firmware and Managing Configurations RS400 251 ROS™ v3.5 14 Upgrading Firmware and Managing Configurations ROS ™ provides the following features for management of system firmware and con.
Upgrading Firmware and Managing Configurations ROS™ v3.5 252 RS400 Start sending the file. After the file transfer is finished device will provide an indicat ion that it was properly upgraded. The device must be reset in order for the new software to take effect.
Upgrading Firmware and Managing Configurations RS400 253 ROS™ v3.5 14.1.3 Upgrading Firmware Using ROS ™ TFTP Client Identify the IP address of the host providing the TFTP server cap ability. Ensure that the firmware revision to be downloaded (e.g.
Upgrading Firmware and Managing Configurations ROS™ v3.5 254 RS400 14.2 Capturing Configurations ROS ™ provides a means to capture the configuration of the device in an ASCII formatted text file. The same file can be downloaded to the device at a later date in o rder to restore the device to its previous configuration.
Upgrading Firmware and Managing Configurations RS400 255 ROS™ v3.5 14.3 Using SQL Commands The ROS ™ provides an “SQL-like” command facility that allows expert users to perform several operati.
Upgrading Firmware and Managing Configurations ROS™ v3.5 256 RS400 Figure 182 Brief snippet of SQL command for fin ding the correct table name 14.3.3 Retrieving Information Retrieving a Table The SQL select subcommand is used to retrieve table information.
Upgrading Firmware and Managing Configurations RS400 257 ROS™ v3.5 results. As an example, suppose that it is de si rable to identify all ports on the device operating in Auto Select mode.
Upgrading Firmware and Managing Configurations ROS™ v3.5 258 RS400 14.3.6 Using RSH and SQL Combination of remote shell scripting and SQL commands offers a means to in terrogate and maintain a large number of devices. Consistency of configuration across sites may be verified by this method.
Appendix A - SNMP MIB Support RS400 259 ROS™ v3.5 Appendix A - SNMP MIB Support Standard MIBs RFC MODULE Name Groups Supported RFC 1907 SNMPv2-MIB SNMP Group SNMP Community Group SNMP Set Group Syst.
Appendix A - SNMP MIB Support ROS™ v3.5 260 RS400 RuggedCom proprietary MIBs Proprietary MIB MODULE Name Groups Supported RuggedSwitch RuggedServer RuggedMC30 RUGGEDCOM-SWITCH-MIB RUGGEDCOM-SERVE R-.
Appendix B – SNMP Trap Summary RS400 261 ROS™ v3.5 Appendix B – SNMP T rap Summary The switch generates the standard traps summarized in the following table.
Appendix C – List of Objects Eligible for RMON Alarms ROS™ v3.5 262 RS400 Appendix C – List of Object s Eligible for RMON Alarms ifInOctets The total number of bytes received on the interface, including framing characters.
Appendix C – List of Objects Eligible for RMON Alarms RS400 263 ROS™ v3.5 The total number of segments sent, including those on current connections but excluding those containing only retransmitted bytes.
Appendix C – List of Objects Eligible for RMON Alarms ROS™ v3.5 264 RS400 The number of good Broadcast packets received. etherStatsMulticastPkts The number of good Multicast packets received. etherStatsCRCAlignErrors The number of packets received which meet all the following conditions: 1.
Appendix C – List of Objects Eligible for RMON Alarms RS400 265 ROS™ v3.5 The total number of received packets that where between 1024 and 1518 bytes long. dot1dBasePortDelayExceededDiscards The number of frames discarded by this port due to excessive transit delay through the bridge.
Appendix C – List of Objects Eligible for RMON Alarms ROS™ v3.5 266 RS400 The total number of packets transmitted that were directed to multicast address. This object is a 64-bit version of ifOutMulticastPkts. ifHCOutBroadcastPkts The total number of packets transmitted that were directed to the broadcast address.
Appendix E – ModBus Management Support and Memory Ma p RS400 267 ROS™ v3.5 Appendix E – ModBus Ma nagement Support and Memory Map ModBus management support in RuggedCom devices provides the user with a simple interface with basic status information.
Appendix E – ModBus Management Support and Memory Map ROS™ v3.5 268 RS400 Note that, as RuggedCom devices have variable number of ports, not all registers and bits apply to all products. Registers that are not applicable to a given product return ze ro value.
Appendix E – ModBus Management Support and Memory Ma p RS400 269 ROS™ v3.5 0414 2 Port 11 Statistics - Ethernet In Packets R Uint32 0416 2 Port 12 Statistics - Ethernet In Packets R Uint32 0418 2 .
Appendix E – ModBus Management Support and Memory Map ROS™ v3.5 270 RS400 04A0 2 Port 17 Statistics - Ethernet In Octets R Uint32 04A2 2 Port 18 Statistics - Ethernet In Octets R Uint32 04A4 2 Por.
Appendix E – ModBus Management Support and Memory Ma p RS400 271 ROS™ v3.5 Text Simple ASCII representation of the information related to the product.
Appendix E – ModBus Management Support and Memory Map ROS™ v3.5 272 RS400 Read Data from device using PortCmd: E.g. A Modbus Request to read multiple registers from location – 0x03FE 0x04 0x03 0xFE 0x00 0x02 Response would depend on the device as on how many ports are available on the device E.
Index RS400 273 ROS™ v3.5 Values used for presenting power supply status have been derived from RuggedCom specific MIB for SNMP. Read Power Supply Status from device using PSStatusCm d: E.
Index ROS™ v3.5 274 RS400 Purging..................................................... 211 Viewing .................................................... 208 MicroLok Configuration .................................. 79 Mirrored Bits Configuration ....
Index RS400 275 ROS™ v3.5 Tagging .................................................... 169 Troubleshooting ....................................... 183 Trunk Type ............................................... 170 WIN and TIN Configuration .........
Ein wichtiger Punkt beim Kauf des Geräts RuggedCom RS400 (oder sogar vor seinem Kauf) ist das durchlesen seiner Bedienungsanleitung. Dies sollten wir wegen ein paar einfacher Gründe machen:
Wenn Sie RuggedCom RS400 noch nicht gekauft haben, ist jetzt ein guter Moment, um sich mit den grundliegenden Daten des Produkts bekannt zu machen. Schauen Sie zuerst die ersten Seiten der Anleitung durch, die Sie oben finden. Dort finden Sie die wichtigsten technischen Daten für RuggedCom RS400 - auf diese Weise prüfen Sie, ob das Gerät Ihren Wünschen entspricht. Wenn Sie tiefer in die Benutzeranleitung von RuggedCom RS400 reinschauen, lernen Sie alle zugänglichen Produktfunktionen kennen, sowie erhalten Informationen über die Nutzung. Die Informationen, die Sie über RuggedCom RS400 erhalten, werden Ihnen bestimmt bei der Kaufentscheidung helfen.
Wenn Sie aber schon RuggedCom RS400 besitzen, und noch keine Gelegenheit dazu hatten, die Bedienungsanleitung zu lesen, sollten Sie es aufgrund der oben beschriebenen Gründe machen. Sie erfahren dann, ob Sie die zugänglichen Funktionen richtig genutzt haben, aber auch, ob Sie keine Fehler begangen haben, die den Nutzungszeitraum von RuggedCom RS400 verkürzen könnten.
Jedoch ist die eine der wichtigsten Rollen, die eine Bedienungsanleitung für den Nutzer spielt, die Hilfe bei der Lösung von Problemen mit RuggedCom RS400. Sie finden dort fast immer Troubleshooting, also die am häufigsten auftauchenden Störungen und Mängel bei RuggedCom RS400 gemeinsam mit Hinweisen bezüglich der Arten ihrer Lösung. Sogar wenn es Ihnen nicht gelingen sollte das Problem alleine zu bewältigen, die Anleitung zeigt Ihnen die weitere Vorgehensweise – den Kontakt zur Kundenberatung oder dem naheliegenden Service.