Benutzeranleitung / Produktwartung FR-E700EX des Produzenten Mitsubishi Electronics
Zur Seite of 323
FR-E700EX INSTRUCTION MANUAL (Applied) SENSORLESS SER VO DRIVE UNIT FR-E700EX SENSORLESS SER VO DRIVE UN IT INSTRUCTION MANUAL (Applied) B 3 PRECAUTIONS FOR USE OF THE DRIVE UNIT 4 P ARAMETERS 5 TROUB.
A-1 Thank you for choosing this Mitsubishi Sensorless servo d rive unit. This Instruction Manual (Applied ) provides instructions for adv anced use of the FR-E700EX series drive units.
A-2 4. Additional Instructions Also the following points must be noted to prevent an accidental failure, injury , electric shock, etc. (1) T ransportation and Mounting (2) Wiring (3) T rial run (4) Usage The product must be transported in correct method that corresponds to the weight.
A-3 (5) Emergency stop (6) Maintenance, inspectio n and part s replacement (7) Disposal A safety backup such as an emergency brake must be provided to prevent hazardous condition to the machine and equipment in case of drive unit failure.
I 1 O U T L I N E 1 1.1 Product checki ng and parts identifica tion ........... ................. ............. 2 1.2 Drive unit and per ipheral devices ......... ................ ................. ............. 3 1.2.1 Peripheral devices ............
II CONTEN TS 3.1.4 Harmonic suppression guide line in Japan ...................... ................ ............. ................ ................ .3 9 3.2 Installation of a reactor .. ............................ ............. .............. .......
III 4.5.8 Setting of the electronic gear (Pr.420, Pr.421) ........................... ................ ................ ............... 108 4.5.9 Setting the position adjustment pa rameters (Pr.426, Pr.506, Pr.507, Pr.510, Pr.511, Pr.536, Y36 signal, PBSY signal, MEND signal, CPO signal, FP signal) .
IV CONTEN TS 4.13.3 Reference of the term inal FM (pulse train output) (Pr.55, Pr.56) ............................. ................ . 161 4.13.4 Terminal FM calibration (ca libration parameter C0 (Pr.900)) ............ ............. ................ .
V 4.20.4 Current average value monitor signal (Pr.555 to Pr.557) .... .......... ...... ............. ................ ......... 249 4.20.5 Free parameter (Pr.888, Pr .889) ...... ................ ................ ............. ................ ......
VI CONTEN TS 6.1.4 Display of the life of the drive unit parts ....... ................... ................ ................ ................ ..... ....... 290 6.1.5 Checking the drive unit and c onverter modules .................... ................ .
VII MEMO.
1 3 4 5 6 7 2 1 1 OUTLINE This chapter explains the "OUTLI NE" for use of thi s product. Always read the instructions before using the equipment. 1.1 Product checking and p arts ide ntification ................................. 2 1.2 Drive unit and peripheral devices .
2 Product checking and parts identification 1.1 Product chec king and par ts identification Unpack the drive unit and check the capacity plate on th e front cover and the rating p late on the drive unit si de face to ensur e that the product agrees with your or der and the drive u nit is intact.
3 1 OUTLINE Drive unit and pe ripheral devices 1.2 Driv e unit and peripher al de vices Braking capability can be improved. (0.4K or higher) Always install a thermal relay when using a brake resistor whose capacity is 1 1K or higher.
4 Drive unit and peripheral devices NO TE The life of the drive un it is influenced by surrou nding air temperature. The surroun ding air temperature should be as low as possible within the permissible range. T his must be noted esp ecially when the drive unit is installed in an enclosure.
5 1 OUTLINE Drive unit and pe ripheral devices 1.2.1 Peripheral devices Check the drive unit model of the drive unit you purchased. Appropriat e peripheral devices must be selected according to the capacity . Refer to the following list and prepare appropriate peripheral devices.
6 Removal and reinstallation of the cover 1.3 R emo val and reinstallation of the co v er 1.3.1 Front cover 1.3.2 Wiring cover Removal and reinst allati on The cover can be removed easily b y pulling. T o rei nsta ll, fit the cover to the drive unit along the guides.
7 1 OUTLINE Installation of th e drive unit and enclosure design 1.4 Installa tion of the driv e unit and enc losur e design When a drive unit en closure is to be designe d and manufac tured, heat g enerated by contained equi pment, etc.
8 Installation of the drive unit and enclosure design (3) Dust, dirt, oil mist Dust and dirt will cause such faults as poor contact of cont act points, reduced insulatio n or reduced cooling effect due to moisture absorption of accumula ted dust and dirt, and in-panel temperature rise due to clogged fil ter .
9 1 OUTLINE Installation of th e drive unit and enclosure design 1.4.2 Cooling system types for drive unit panel From the panel that contains the drive unit, the heat of the dr ive unit and other eq uipment (transformers, lamps, resisto rs, et c.
10 Installation of the drive unit and enclosure design 1.4.3 Drive unit placement (1) Installation of the drive unit Enclosure surfa ce mounting Remove the front cover and wiring cover to fix the drive unit to the surface. (2) Clearances around drive unit (3) Drive unit mounting orien t ation Mount the drive unit on a wall as spe cified.
11 1 OUTLINE Installation of th e drive unit and enclosure design (4) Arrangement of mu ltiple drive unit s (5) Arrangement of ventilation f an and drive unit When multiple drive units are placed in the same enclosure, generally arrange them horizontally as shown in the right figure (a).
12 MEMO.
4 13 3 5 6 7 2 1 2 WIRING This chapter describes the ba sic "WIRING" for use of this product. Always read the instructions before using the equipment. 2.1 Wiring ...............................................................................
14 Wiri ng 2.1 W iring T erminal connection di agram (Speed control) NO TE For the terminal connect ion diagram for the pos ition control, refer to page 90 . T o prevent a malfunction caused by noise, separate the signal cables more than 10cm from the power cables.
15 2 WIRING Main circuit termi nal specifications 2.2 Main circuit ter minal specifications 2.2.1 Specification of main circuit terminal 2.2.2 T erminal arrangement of the main ci rcuit terminal , pow.
16 Main circuit termin al specifications 2.2.3 Cables and wiring length (1) Applicable ca ble size Select the recommended cable size to ensure that a voltage drop will be 2% at maximum. The following table indicates a selection example for the wiring length of 20m.
17 2 WIRING Main circuit termi nal specifications (2) Earth ing (Grounding) pre cautions (3) Wiring length Connect a PM motor within the total wiring length of 30 m. Use one dedicated PM motor for one dri ve unit. Multip le PM motors cannot be connected to a drive uni t.
18 Control circuit specifications 2.3 Contr ol cir cuit specifica tions 2.3.1 Control circuit terminal indicates that terminal functions ca n be selected using Pr .
19 2 WIRING Control circuit specifications S peed settin g 10 S peed se tting power supply Used as power supply when connecting potentiometer for speed setting (speed setting) from outside of the drive unit. (Refer to Pr .73 Analog input selection ) 5.
20 Control circuit specifications (2) Output s ignal (3) Com municati on Ty p e Te r m i n a l Symbol T erminal Nam e Descriptio n Rated S pecifications Reference Page Relay A, B, C Relay output (fault output) 1 changeover contact output indicates that the drive unit protective function has activated and the output stopped.
21 2 WIRING Control circuit specifications 2.3.2 Changing the control logic The input signals are set to sink logic (SINK) when shipped from the factory . T o change the control logic, the jumpe r connector above the control terminal must be moved to the other position.
22 Control circuit specifications When using an external power supply for transistor output Sink logic type Use terminal PC as a common terminal, and perform wiring as shown below . (Do not connect te rminal SD of the drive unit with terminal 0V of the external power su pply .
23 2 WIRING Control circuit specifications 2.3.3 Wiring of control circuit T erminal layout Wiring method 1) S trip off the sheath of the wire of the control circuit to wire. S trip off the sheath ab out the length below. If the length of the sheath peeled is too long, a short circuit may o ccur among neighboring wires.
24 Control circuit specifications (1) Control circuit common terminals (SD, 5, SE) T erminals SD, SE and 5 are common terminals for I/O signals. (All common terminals are isolated from each other .) Do not earth them. Avoid connecting the termin al SD and 5 and the terminal SE and 5.
25 2 WIRING Control circuit specifications 2.3.4 Connection to the PU connector Using the PU connector , you can perform commun ication ope rati on from the parameter unit (FR-PU07), enclosure surface operation panel (FR-P A07) or a personal computer etc.
26 Control circuit specifications RS-485 communicat ion When the PU connector is connected with a personal, F A or ot her computer by a communicatio n cable, a user program can run and monitor the drive unit or read and write to parameters. The protocol can be selected from Mitsubishi drive unit and Modbus-RTU.
27 Connection of sta nd-alone option unit 2 WIRING 2.4 Connection of stand-alone option unit The drive unit accepts a variety of stand-alone option units as required. Incorrect connecti on will cause dri ve unit da mage or acci dent. Connect and operate the optio n unit carefully in a ccordance with the correspon ding option unit manual.
28 Connection of sta nd-alone option unit It is recommended to configure a sequence, which shuts off powe r in the input side of the drive unit by the external thermal relay as shown below , to preven.
29 Connection of sta nd-alone option unit 2 WIRING 2.4.2 Connection of the brake unit (FR-BU2) Connect the brake u nit (FR-BU2) as shown below to improve the braking capability at deceleration. If the transi stors in the brake unit should become faulty , the resistor can be unusuall y hot.
30 Connection of sta nd-alone option unit 2.4.3 Connection of the high power factor converter (FR-HC2) When connecting the high power factor co nverter (FR-HC2) to suppress power harmonics, p erform wiring securely as shown below . Incorrect con nection will damage the high power facto r converter and the drive unit.
31 Connection of sta nd-alone option unit 2 WIRING 2.4.4 Connection of the power rege neration common converter (FR-CV) When connecting the powe r regeneration common converter (FR - CV), connect the .
32 Connection of sta nd-alone option unit 2.4.5 Connection of the DC reactor (FR-HEL) (1) Keep the surrounding air temperature within the permissibl e range (-1 0°C to +50°C).
33 3 4 5 6 7 2 1 3 PRECA UTIONS FOR USE OF THE DRIVE UNIT This chapter explains the "PRECAUTIONS FOR USE OF THE DRIVE UNIT" for use of this pr oduct. Always read the instructions before using the equipment. 3.1 EMC and leakage current s ....
34 EMC and leakage currents 3.1 EMC and leakage cur r ents 3.1.1 Leakage currents and countermeasures Capacitances exist between the drive unit I/O cables, other cables a nd earth and in the motor , throu gh which a leak age current flows. Therefore, take the following measures.
35 EMC and leakage currents 3 PRECAUTIONS FOR USE OF THE DRIVE UNIT (3) Select ion of rated sens itivity current of earth (ground ) leakage current breaker When using the earth leakage current breaker with th e drive uni t circuit, select its rated s ensitivity current as follows, independently of the PWM carrier frequency .
36 EMC and leakage currents 3.1.2 EMC measures Some electromagnetic noises enter the driv e unit to malfunction it and others are radiated by th e drive unit to malfunction peripheral devices. Though th e drive unit is designed to have high immunity performa nce, it handles low-level signals, so it requires the follo wing basic techniques.
37 EMC and leakage currents 3 PRECAUTIONS FOR USE OF THE DRIVE UNIT Data line filter Data line filter is ef fective as an EMC measure. Prov ide a data line filter fo r the detector cable, etc.
38 EMC and leakage currents 3.1.3 Power supply harmonics The drive unit may gene rate power su pply harmonics from its conv erter circuit to affect the po wer generator , power capacitor etc. Power supply harmonics are different from noise and leak age currents in source, frequency band and transmission path.
39 EMC and leakage currents 3 PRECAUTIONS FOR USE OF THE DRIVE UNIT 3.1.4 Harmonic suppression guideline in Japan Harmonic currents flow fro m the drive unit to a power receiving p oint via a power transfor mer . The harmo nic suppression guideline was established to protect other co nsumers from these outgoing harmonic currents.
40 EMC and leakage currents 1) Calculation of equivalent capacity (P0) of harmonic generating eq uipment The "equivalent capacity" is the capacity of a 6-pulse conv erter converte d from the capacity of consumer's harmonic generating equipment and is calculated with th e foll owing equation.
41 Installation of a reactor 3 PRECAUTIONS FOR USE OF THE DRIVE UNIT 3.2 Installa tion of a reactor When the drive unit is con nected near a large-capacity power tr ansformer (500kV A or more) or when a power capacitor is to be switched over , an excessive peak current may flo w in the pow er input circuit, damaging the converter circuit.
42 Power-OFF and magne tic contactor (MC) 3.3 P ower-OFF and magnetic contactor (MC) (1) Drive unit input side magn etic cont actor (MC) On the drive unit input side, it is recommend ed to provide an MC for the following purpo ses. (Refer to page 5 for selection.
43 3 PRECAUTIONS FOR USE OF THE DRIVE UNIT Precautions for use of the drive unit 3.4 Precautions for use of the driv e unit The FR-E700EX series is a highl y reliable product, but usin g incorrect peripheral circuits or incorrect operatio n/handling methods may shorten the product life or damage the product.
44 Precautions for use of the drive unit (12) Acros s terminals P/+ and PR, connect o nly an external brake resistor . Do not connect a mech anical brake. The brake resistor can not be connected to the 0.1K or 0.2K. Leave terminals P/+ and PR open. Also, never short between these termin als.
45 Failsafe of the system wh ich uses the drive unit 3 PRECAUTIONS FOR USE OF THE DRIVE UNIT 3.5 F ailsafe of the system which uses the driv e unit When a fault occurs, the drive unit trips and outputs a fault signa l.
46 Failsafe of the system wh ich uses the drive unit Check if RUN signal is output when inputting the start signal to the drive unit (forward sign al is STF signal and reverse signal is STR si gnal).
47 3 4 5 6 7 2 1 4 P ARAMETERS This chapter explains the "P ARAMETERS" for use of this product. Always read the instructions before using the equipment.
48 Operation panel 4.1 Operation panel 4.1.1 Names and functions of the operation panel The operation p anel cannot be removed from the drive unit. Operation mode indicator PU: ON to indicate PU operation mod e. EXT : ON to indicate External operation mode.
49 4 P ARAME TERS Operation panel 4.1.2 Basic operation (factory settin g) STOP Operation mode switchover Parameter setting Faults history Monitor/speed setting At power-ON (External operation mode) P.
50 Operation panel 4.1.3 Easy operation mode setting (easy setting mode) Setting of Pr .79 Operation mode selection according to combination of the start command and speed command can be easily made. Operation example S tart command: external (STF /STR), speed command: operate with Operation Display 1.
51 4 P ARAME TERS Operation panel 4.1.4 Changing the parameter setting value 4.1.5 Displ aying the set speed Press the setting dial ( ) in the PU operation mode or i n the External/PU combined operation mode 1 ( Pr .79 = "3 ") to show the set speed.
Parameter list Parameter list 52 P a r a m e t e r L i s t 4 P ARAMETERS 4.2 P arameter list 4.2.1 Param eter list For simple variable-speed operation of the inverte r , the initial setting of the parameters may be used as they are. Set the necessary parameters to meet the l oad and operationa l specifications.
Parameter list Parameter list 54 P a r a m e t e r L i s t 4 P ARAMETERS Secind functions 44 Second acceler ation/deceleration time 0 to 360s 0.01s 5 s 125 44 2C AC 0 45 Second deceleration time 0 to 360s, 9999 0.01s 9999 125 45 2D AD 0 48 Second torque limit level 0 to 200%, 9999 0.
Parameter list Parameter list 56 P a r a m e t e r L i s t 4 P ARAMETERS 149 T orque limit level at 20mA input 0 to 200% 0.1% 200% 111 149 31 B1 1 Current detection 150 Output current detection level 0 to 200% 0.1% 1 50% 150 150 32 B2 1 151 Output current detection signal delay time 0 to 10s 0.
Parameter list Parameter list 58 P a r a m e t e r L i s t 4 P ARAMETERS Life diagnosis 255 Life alarm status display (0 to 15) 1 0 24 5 255 3F BF 2 256 Inrush current limit ci.
Parameter list Parameter list 60 P a r a m e t e r L i s t 4 P ARAMETERS Position control 420 Command pulse multiplication numerator (electronic gear numerator) 1 to 32767 1 1 108 420 14 94 4 .
Parameter list Parameter list 62 P a r a m e t e r L i s t 4 P ARAMETERS S topper control 512 S topper contr ol function selection 0, 1, 10, 1 1, 12 1 0 102 512 0C 8C 5 513 S toppe.
Parameter list Parameter list 64 P a r a m e t e r L i s t 4 P ARAMETERS Position control 578 First positioning acceleration time 0.01 to 360s 0.01s 5s 95 578 4E CE 5 579 First positioning deceleration time 0.01 to 360s 0.01s 5s 95 579 4F CF 5 580 Second positioning acceleration time 0.
Parameter list Parameter list 66 P a r a m e t e r L i s t 4 P ARAMETERS Regeneration avoidance function 882 Regeneration avoidance operation selection 0, 1, 2 1 0 242 882 52 D2 8 883 Regeneration avoidance operation level 3 00 to 800V 0.
Parameter list Parameter list 68 P a r a m e t e r L i s t 4 P ARAMETERS Clear parameters Initial value change list Pr .CL Parameter clear 0, 1 1 0 261 Pr .CL FC ALLC All parameter clear 0, 1 1 0 26 1 ALLC FC Er .
70 4.3 PM sensorless vector control 73 4.3.1 Outline of PM sensorless vect or control ..... ................ ................. ............ ................. ................ .... 73 4.3.2 Automatic parameter setting in accordance with the motor (Pr.998) .
71 Parameters accor ding to pur poses 4 P ARAME TERS 4.9.3 Acceleration/deceleration pa ttern (Pr.29) ........ ................ ............. ................ ................ ............ .. 12 9 4.10 Selection and prot ection of a motor 130 4.10.1 Motor overheat protection (Electronic t hermal O/L relay) (Pr.
72 4.17.1 Operation mode selection (Pr.79) ............... ................ ................. ................ ................ ......... ...... 186 4.17.2 Operation mode at power-ON (Pr.79, Pr.340) ...... ............. ................ ..............
73 4 P ARAME TERS PM sensorless vector control 4.3 PM sensor less vector control 4.3.1 Outline of PM se nsorless vector control A dedicated PM (magnet) motor is a high ly ef ficient motor compared to an i nduction motor . With this PM motor , highly efficient motor control and highly accurate motor speed control can be performed.
74 PM sensorless vector control (2) PM p arameter in itial ization list The parameter settings in the following table are changed to the settings required to perform control for the applied PM mo tor with the parameter setting mo de or with Pr .998 PM paramet er ini tialization setting.
75 4 P ARAME TERS PM sensorless vector control 4.3.3 Changing the control method (Pr .800) The above p arameter can be set whe n Pr .160 Extended functio n display selec tion ="0". (Refer to pa ge 182) When an S-PM geared motor is used ( Pr .
76 PM sensorless vector control (2) V alid /invalid st atuses of I /O termi nal func tions during the te st operation Input signal Output signal Signal name Function Signal name Function RL Low-speed .
77 4 P ARAME TERS PM sensorless vector control (3) V alid/invalid st atuses of monitor output s during the test operation : V alid : Invalid (always displays 0) : Displays accumulated valu.
78 Speed control 4.4 Speed control 4.4.1 Outline of speed control (1) Control block diagra m Purpose Parameter to set Refer to page T o adjust gain for speed control Gain adjustme nt Pr .820, Pr .821 80 T o enhance the trackability of the motor in response to a speed command chan ge Speed feed forward control, model adaptive speed contr ol Pr.
79 4 P ARAME TERS Speed control (2) Model adaptive cont rol and feed forward control The model adaptive control is a control l ogic based on the load inertia setting to se t gains individually for the i deal model section and the actual loop section, achieving a fast-responsing an d mechanically stable setting.
80 Speed control 4.4.3 Adjusting the speed control gain (Pr .820, Pr .821, X44 signal) The above parameter s can be set when Pr .160 Extended function dis play selectio n = "0".
81 4 P ARAME TERS Speed control Actual speed response is calculated as below when load inertia is applied. Adjust in the following procedure: 1) Chan ge the Pr .
82 Speed control (4) T roub leshootin g Condition Possible cause Countermeasu re 1 Motor does not run at the correct speed. (Command speed and actual speed dif fer .) (1) S peed command from the controller is different from the actual speed. The speed command is affected by noise.
83 4 P ARAME TERS Speed control 4.4.4 Speed feed forward control, model adaptive speed control (Pr .828, Pr .877 to Pr .881) The above parameters are availa ble only with MM-GKR motors.
84 Speed control (2) Model adapt ive speed control ( Pr .877 = "2") The motor's model speed is calculated to feed back the model side sp eed controller . This model speed is also used as the actual speed controller command . The inertia ratio of Pr .
85 4 P ARAME TERS Speed control 4.4.6 Notch filter (Pr .862, Pr .863, Pr .871) The mechanical resonance frequency is su ppressed by setting the mechan ical resonance frequency in Pr .862 Notch filter fr equency and adjusting Pr .863 Notch filter depth and Pr .
86 Speed control 4.4.7 Spee d estimation gain and curren t control gain (Pr .730, Pr .824, Pr .825) (1) S peed control P ga in 2 (Pr .730) Set the proportional gain for the speed estimator with 200 rad/s as 100%. Setting this parameter higher improves th e trackability for speed command cha nges.
87 4 P ARAME TERS Speed control 4.4.8 Adjusting the motor wiring resistance (Pr . 658) .......S pecifications diff er according to the date assembled. Refer to page 316 to check the SERIAL nu mber . The motor wiring resistance can be set. The set value is calculated acco rding to the following formula.
88 Position control 4.5 P osition contr ol 4.5.1 Outline of position control (1) Position contr ol specifications T urning OFF the power or t he SON signal (LX signal) eliminates t he home position. Af ter turning ON the power or the S ON signal (LX signal), always perf orm the home position return.
89 4 P ARAME TERS Position control (2) Control block diagram RH signal Point table selection RM signal RL signal Speed command created Target position [Before electronic gear] Travel distance created .
90 Position control (3) Connection ex ample NO TE T o prevent a malfunction caused by noise, separate the signal cables more than 10cm from the power cables. Also separate the main circuit wire of the input sid e and the output si de. After wiring, wire offcut s must not b e left in the drive unit.
91 4 P ARAME TERS Position control 4.5.2 Setting procedure of position control Perform secure wiring. (Refer to page 90) Change the parameter settings to the initial va lue in accordance with the applied motor .
92 Position control 4.5.3 Gain adjustment of position control (Pr .422, Pr .423, Pr .427, Pr .4 46, Pr .463, Pr .698, Pr .877) (1) Position loop gain (Pr .422) Make adjustment when any of such ph enomena as unusua l vibration, noise and overcurrent of the motor/machine occurs.
93 4 P ARAME TERS Position control (3) Model adapt ive speed control ( Pr .446, Pr .877 = "2") The model speed of the motor is calculated, and the feedback is applied to the position controller o n the model side. Also, this model position is set as the co mmand of the actual position controll er .
94 Position control (7) T roubles hooting (for pos ition control) Condition Cause Countermeasure The motor does not rotate. (1) The phase sequence of moto r wiring is incorrect.
95 4 P ARAME TERS Position control 4.5.4 Simple positioning function by point tables (Pr .4 to 6, Pr .24 to Pr .27, Pr .465 to Pr .478, Pr .508, Pr .509, Pr .
96 Position control (1) Point t able se tting (Pr .4 to 6, Pr .24 to Pr .2 7, Pr .465 to Pr .478, Pr .525 to Pr .531, Pr .537, Pr .578 to Pr .5 91) Assign the target position, speed, and a ccel eration/deceleration time to the point tables and select the tables using the RH, RM, and RL signals.
97 4 P ARAME TERS Position control Set the function of the target position data in Pr .525 to Pr .531 auxiliary fun ction. "Continuou s" cannot be set in Pr .531 Seventh pos itioning sub-function . T o perform posi tion control, tur n ON the SON signal or the LX signal.
98 Position control The start command must remain ON fo r 20 ms or longer . Wa it for 5 ms or longer after t he table selectio n signal is turned ON.
99 4 P ARAME TERS Position control (3) Roll feed mode ( Pr .537 = "1") The current position and position command are set to 0 at start, and then position control is performed.
100 Position control 4.5.5 Stop operation under positi on control (Pr .464, Pr .535) (1) Sudden s top (X87 sig nal) When the X87 signal (position control sudden stop signal) is assigned to the in put terminal, the operatio n stops according to the deceleration ti me slope set by Pr .
101 4 P ARAME TERS Position control (2) S troke end setting (LSP signal, LSN signal, and LP signal) When the LSP signal (forward stroke end signal) or the LSN signal (reverse stroke end signal) is assigned to the input terminal, the operation stops according to the deceleration time slope set by Pr .
102 Position control 4.5.6 Stopper control function (P r .512 to Pr .515, X29 signal) (1) S topper control by the X29 signal ( Pr .512 = "1", Pr .513 , X29 signal) When the X29 signal (stoppe r cont rol switchover sig nal) is assigne d to the input terminal, the Pr .
103 4 P ARAME TERS Position control (2) S topper control by torque limit aut omatic switching under position con trol (Pr .512 to Pr .515) When the current positi on [before the electron ic gear ] ex ceeds the stopper control switching position ( Pr .
104 Position control 4.5.7 Home position return under position contro l (Pr .1 10, Pr .1 1 1, Pr .453, Pr .455, Pr .508, Pr .509, Pr .532 to Pr .534) (1) Home position return p attern selection (Pr .532) Use Pr .532 to set a pattern of home position return.
105 4 P ARAME TERS Position control (2) Home positio n return completed signal (ZP signa l) and home position return failure warn ing signal (ZA signal) When home position return is complete d, the home position re turn completed signal (Z P) is turned ON.
106 Position control (4) S topper type ( Pr .532 = "3", Pr .533, Pr .534 ) A moving part is brought into contact with the machine end stopper to determine the home position. Home position return is performed in the following procedure.
107 4 P ARAME TERS Position control (5) Ignoring the home position (servo-ON position as the home position) ( Pr .532 = "4") The position at servo -ON (or pre-excitation) is set as the home position. The home position shift distance ( Pr .
108 Position control 4.5.8 Setting of the electronic gear (Pr .42 0, Pr .421) The position resolution (tra vel per pulse [mm]) is determined by the travel per motor revolution s [mm] and the numbe r of pulses per motor rotation, and is re presented by the followin g expression.
109 4 P ARAME TERS Position control 4.5.9 Setting the position adjust ment parameters (Pr .426, Pr .506, Pr .507, Pr .510, Pr .51 1, Pr .536, Y36 signal, PBSY signal, MEND signal, CPO si gnal, FP signal) (1) In-pos ition wid th and in-position signal ( Pr .
11 0 Position control (3) T ravel completed signal (MEND signal) The travel completed signal (MEND signal) is turned ON wh en the in-position signal (Y36) i s ON and the position command creating signal (PBSY) is OFF .
111 Adjusting the output torque (current) of the motor 4 P ARAME TERS 4.6 Adjusting the output tor que (cur rent) of the motor 4 . 6 . 1 To r q u e l i m i t (Pr .22, Pr .48, Pr .148, Pr .149, Pr .156, Pr .157) (1) Block diagram (2) Setting t he torque l imit level (P r .
11 2 Adjusting the output torque (current) of the motor (3) T orque limit signal output a nd output timing a djustment (OL signal, Pr .157 ) If the output torque exceeds the torq ue limit operation level a nd the to rque limit operation is activated, the torque limit operation signal (OL signal ) is turned ON for 100ms or long er .
11 3 Adjusting the output torque (current) of the motor 4 P ARAME TERS (6) Limit the to rque limit according to the operating st atus (Pr .156) Refer to the followi ng table and select whether torque limit operation w ill be performed or not and the operation to be performed at OL sign al output.
11 4 Adjusting the output torque (current) of the motor 4.6.2 Adjusting the S-PM geared motor starting torque (Pr .785) For Pr . 785 , set the maximum torque to be generated in th e low-speed range of 300r/min or less. Set a large value to generate a large starting torque.
11 5 Limiting the rotation speed 4 P ARAME TERS 4.7 Limiting the rotation speed 4.7.1 Maximum/minimum setting (Pr .1, Pr .2) When a value exceeding 3000 r/min is set, th e rotation speed will be limited at 3000 r/min. Also, when an S-PM geared motor is used, the maximum sett ing va lue dif fers depending on the drive unit cap acity .
11 6 Limiting the rotation speed 4.7.2 Avoiding mechanical resonance points (Speed jump) (Pr .3 1 to Pr .36) The above parameters can be set when Pr .160 Extended function display selection ="0". (Refer to page 182) When a value exceeding 3000 r/min is set, the rota tion speed will be limited at 3000 r/min.
11 7 Speed setting by external terminals 4 P ARAME TERS 4.8 Speed setting by external terminals 4.8.1 Operation by multi-speed operation (Pr .4 to Pr .6, Pr .24 to Pr .27, Pr .232 to Pr .239) The above parameters allo w its setting to be changed during operati on in any operation mode even if "0" (initial value) is set in Pr .
11 8 Speed setting by external terminals (2) Multi-speed se tting for 4 or more speeds (Pr .24 to Pr .27, Pr .232 to Pr .239) S peed from 4 speed to 15 speed can be set according to the comb ination of the RH , RM, RL and REX sign als. Set the running speeds in Pr .
11 9 Speed setting by external terminals 4 P ARAME TERS 4.8.2 Jog operation (Pr .15, Pr .1 6, JOG signal, JOG2 signal) (1) JOG operation und er position control T o perform position control, turn ON t he SON signal or th e LX signal. For the de scription of the SON signal and the LX signal, refer to page 131 .
120 Speed setting by external terminals (2) Jog operation fr om out side When the JOG (JOG2) signal is ON, a start and stop can be made by the st art signal (STF , STR). For the terminal used for Jog opera tion selection, set "5" in any of Pr .
121 Speed setting by external terminals 4 P ARAME TERS (3) Jog operatio n from PU Enable the JOG operation mode usi ng the operation pane l and PU (FR-PU07) under sp eed control. Operation is performed only whil e the st art button is pressed . Operation Display 1.
122 Speed setting by external terminals 4.8.3 Remote setting function (Pr .59) The above parame ter can be set wh en Pr .160 Extended function display selection = "0". (Refer to pag e 182) External running speed (othe r than multi-speed) or PU runnin g speed NO TE The Pr .
123 Speed setting by external terminals 4 P ARAME TERS (1) Remote setting functio n Use Pr .59 to select wh ether the remote setting function is used or not and whether the speed setting storage functi on in the remote setting mode is used or not.
124 Speed setting by external terminals REMARKS During Jog operation or PID control opera tion, the remote setting function is invalid . CAUTION When selecting this function , re-set the maximum speed accor ding to the machine. Parameter s refer r ed to Pr .
125 Setting of acceleration/deceleration time and acceleration/dec eleration pattern 4 P ARAME TERS 4.9 Setting of acceleration/deceler a tion time and acceleration/ deceleration pa tter n 4.9.1 Setting of the accele ration and deceleration time (Pr .
126 Setting of acceleration/decel eration time and accelerat ion/deceleration pattern (2) Decelerat ion time setting (Pr .8, Pr .20) Use Pr .8 Deceleration time to set the deceleration time required to reac h 0r/min from Pr .20 Acceleration/d eceleration r eferen ce speed .
127 Setting of acceleration/deceleration time and acceleration/dec eleration pattern 4 P ARAME TERS (4) Faulty ac celeration rat e detectio n (Pr .375) When the acceleration rate of the mo tor rotation speed is incr eased, such as when the machine collide s against a foreign object, the drive unit can cause the acceleration rate error (E .
128 Setting of acceleration/decel eration time and accelerat ion/deceleration pattern 4.9.2 Motor starting speed (Pr .13 ) The above paramet ers can be set when Pr .160 Extended fu nction display s election = "0". (Refer to page 182) When a value exceeding 3000 r/min is set, the rota tion speed will be limited at 3000 r/min.
129 Setting of acceleration/deceleration time and acceleration/dec eleration pattern 4 P ARAME TERS 4.9.3 Acceleration/dece le ration pattern (Pr .29) The above parameter s can be set when Pr .160 Extended function dis play selectio n = "0".
130 Selection and protection of a motor 4.10 Selection and pr otection of a motor 4.10.1 Motor overheat protection (Ele ctronic thermal O/L relay) (Pr .
131 Motor brake and stop operation 4 P ARAME TERS 4.11 Motor br ak e and stop operation 4.1 1.1 Zero speed control, pre-excitation, servo-ON, and servo lock (Pr .10, Pr .1 1, Pr .795, Pr .802, LX signal, SON signal) The above parameters can be se t when Pr .
132 Motor brake and stop operation (3) T orque setting during DC injection brake operation (Pr .795) In Pr .795 , set the maximum torque tha t can be generated during DC injectio n brake operation. When a value exceeding 50% is set, motor overload trip (E.
133 Motor brake and stop operation 4 P ARAME TERS Operation under speed control St art signal state With SON signal a ssigned Without SON signal assigned SON signal ON SON signal OFF LX signal ON .
134 Motor brake and stop operation MM-GKR operation under position control St art signal state With SON signal assigned Without SON signal assigned SON signal ON SO N signal OFF LX signal ON LX si.
135 Motor brake and stop operation 4 P ARAME TERS 4.1 1.2 Activating the electromagne tic brake (MBR signal, Pr .736) The above parameter can be set when Pr .
136 Motor brake and stop operation 4.1 1.3 Selection of a rege nerative brake (Pr . 30, Pr .70) The above paramet ers can be set when Pr .160 Extended fu nction display s election = "0".
137 Motor brake and stop operation 4 P ARAME TERS 4.1 1.4 Stop selection (Pr .250) The above p arameter can be set whe n Pr .160 Extended functio n display selec tion = "0". (Re fer to page 182) Used to select the stopping metho d (deceleration to a stop or coasting) when the start signal turns OFF .
138 Function assignment of external terminal and control 4.12 Function assignment of exter nal ter minal and contr ol 4.12.1 Input terminal function selection (Pr .178 to Pr .184) The above paramet ers can be set when Pr .160 Extended fu nction display s election = "0".
139 Function assignment of exter nal terminal and control 4 P ARAME TERS When Pr .5 9 Remote function select ion "0", the functions of the RL, RM and RH signals are changed as given in the table. The OH signal turns ON when the relay cont act "opens".
140 Function assignment of external terminal and control (2) Response t ime of each signal The response time of the X10 signal and MRS si gnal is within 2ms. The response time of other signals is within 20ms. 4.12.2 Drive unit output shutof f signal (MRS signal, Pr .
141 Function assignment of exter nal terminal and control 4 P ARAME TERS 4.12.3 Condition selection of function validity by second function selection signal (RT) When the RT signal turns ON, the second function becomes valid. For the RT signal, set "3" in any of Pr .
142 Function assignment of external terminal and control 4.12.4 S tart signal operation select i on (STF , STR, STOP signal, Pr .250) The above paramet ers can be set when Pr .160 Extended fu nction display s election = "0". (Refer to page 182) (1) T wo-wire type connection (STF , STR signal) The two-wire connection is shown below .
143 Function assignment of exter nal terminal and control 4 P ARAME TERS (2) Three-wir e type (STF , STR, STOP signal) The three-wire connection is shown below . T urn ing the STOP signal ON makes start self-holding functi on valid. In this case, the forward/reverse rotation signal functions only as a start signal.
144 Function assignment of external terminal and control 4.12.5 Output terminal function selection (Pr .190 to Pr .192) (1) Output s ignal list Y ou ca n set the functions of the output terminals.
145 Function assignment of exter nal terminal and control 4 P ARAME TERS 14 1 14 FDN PID lo wer limit S peed control Output when the feedback value falls below the lower limit of PID co ntrol.
146 Function assignment of external terminal and control 64 164 Y64 During retry Output during retry pr ocessing. Pr.65 to Pr .69 164 68 168 EV 24V external po wer supply operation The signal is output while the main circuit power supply is off and the 24V power is supplied externally .
147 Function assignment of exter nal terminal and control 4 P ARAME TERS (2) Drive unit operat ion ready signal (R Y si gnal) and drive unit running signal (RUN signal) When the drive unit is re ady to operate, the output of the opera tion ready signal (RY) is ON.
148 Function assignment of external terminal and control (3) Fault output signal (ALM signal) (4) Fault outp ut 3 (power-o ff signal) (Y91 signal) The Y91 signal is output at occurrence of a fault attributable to the failure of the drive unit circuit or a fault caused by a wiring mistake.
149 Function assignment of exter nal terminal and control 4 PA R A M E T E R 4.12.6 Detection of rotation speed (SU, FU signal, Pr .41 to Pr . 43, Pr .
150 Function assignment of external terminal and control 4.12.7 Output current detection function (Y 12 signal, Y13 signal, Pr .150 to Pr .153) The above paramet ers can be set when Pr .
151 Function assignment of exter nal terminal and control 4 P ARAME TERS CAUTION The zero current dete ction level setting should not be too low , and the zero current detection time setting not too long. Othe rwise, the de tection signal ma y not be outp ut when torque is not gene rated at a lo w output current.
152 Function assignment of external terminal and control 4.12.8 Remote output selection (REM signal, Pr .495, Pr .496) Y ou can utilize the ON/OF F of the drive unit's output signal s instead of the remote output terminal of the programmable logic controller .
153 Monitor display and monitor output signal 4 P ARAME TERS 4.13 Monitor display and monitor output signal 4.13.1 Speed display and s peed setting (Pr .37, Pr .144) The above parameter s can be set when Pr .160 Extended function dis play selectio n = "0".
154 Monitor display and monitor output signal NO TE Refer to Pr .5 2 when you want to change t he PU main monitor (PU main d isplay) Since the panel display of the operation p anel is 4 digits in length, the monitor value of more than "9999" is displayed "----".
155 Monitor display and monitor output signal 4 P ARAME TERS 4.13.2 Monitor display selec ti on of DU/PU and terminal FM (Pr .52, Pr .54, Pr .170, Pr .171, Pr .268, Pr .430, Pr .563, Pr .564) The monitor to be displayed on the main screen of the control panel and parameter unit (FR-PU07) can be selected .
156 Monitor display and monitor output signal (1) Monitor descript ion list (Pr .52) Set the monitor to be displayed on the operation panel and parameter unit (FR-PU07) in Pr .52 DU/PU main display data selection . Set the monitor to be output to the terminal FM (pulse train output) in Pr .
157 Monitor display and monitor output signal 4 P ARAME TERS When "102 or h igher" is set in Pr .144 Speed setting swit chover , the speed display is enabled.
158 Monitor display and monitor output signal The set speed (frequency) di splayed indicates the sp eed (frequency) to be outp ut when the start command is ON. Different fr om t he speed (frequency) se tting displayed when Pr .52 = "5", the value based on maximum/minimum frequency and frequency jump is displayed.
159 Monitor display and monitor output signal 4 P ARAME TERS (3) Operation p anel I/O terminal monitor (Pr .52) When Pr .52 is set to "55", the I/O terminal status can be monitored on the operation panel. The I/O terminal monitor is displayed on the third monitor .
160 Monitor display and monitor output signal (5) Cumulative ener gization time and actual operati on time monitor (Pr .171, Pr .563, Pr .5 64) Cumulative energization time monitor ( Pr .52 = "20") accumulates energi zation time from shipment of the d rive unit every one hour .
161 Monitor display and monitor output signal 4 P ARAME TERS 4.13.3 Refere nce of the te rminal FM (pulse train output) (Pr .55, Pr .56) (1) S peed monitoring reference (Pr .55) Set the full scale value when outputting the speed monitor from terminal FM.
162 Monitor display and monitor output signal 4.13.4 T erminal FM calibration (calibration par ameter C0 (Pr .900)) (1) FM terminal calibrati on (C0 (Pr .900)) The terminal FM is preset to output pulses. By setting the FM terminal calibration C0 (Pr .
163 Monitor display and monitor output signal 4 P ARAME TERS (2) How to calibrate the terminal FM when using the operation p anel Operation Display 1. Confirmation of the operation status indicator and operation mode indicator (When Pr .54 = 1) 2. Press to choose the parameter setting mode.
164 Operation setting at fault occurrence 4.14 Oper ation setting a t fault occur r ence 4.14.1 Retry function (Pr .65, Pr .67 to Pr .69) Retry operation automatically resets a fault a nd restarts the drive unit at the starting speed when the time set in Pr .
165 Operation setting at fault occurrence 4 P ARAME TERS Using Pr .65 , you can sele ct the fault that will cause a retry to be executed. No re try will be made for the fault no t indicated. ( Refer to page 268 for the fault description.) indicates the faul ts selected for retry .
166 Operation setting at fault occurrence 4.14.2 Input/output phase loss protection selection (P r .251, Pr .872) (1) Output phas e loss protection selection (Pr .251) If a phase loss occurs during drive unit opera tion (except for du ring zero speed co ntrol, or 12r /min or less rotation speed), the output phase loss protec tion (E.
167 Operation setting at fault occurrence 4 P ARAME TERS 4.14.4 Overspeed detection (Pr .374) The drive unit output can be sh ut off in case of overspeed. Parameter number Name Initial value Setting range Description 374 Overspeed detection level 3450r/min 0 to 4800r/min When the motor speed reaches or exceeds the speed set in Pr .
168 Speed setting by analog input (terminal 2, 4) 4.15 Speed setting by analog input (ter minal 2, 4) 4.15.1 Analog input selection (Pr .73, Pr .267) (1) Selection of an alog input specifications For the terminal 2 for analog voltage input, 0 to 5V (initial value) or 0 to 10V can be selected.
169 Speed setting by analog input (terminal 2, 4) 4 P ARAME TERS Refer to the followi ng table and set Pr .73 a nd Pr .267 . ( indicates main spee d setting) The terminal used for the AU signal inpu t, set "4" in Pr .178 to Pr .184 (input terminal function selection) to assign functions.
170 Speed setting by analog input (terminal 2, 4) (3) Perform opera tion by analog input selection Operation can be performed by inpu tting the output signal 4 to 20mADC of the adjuster to across the terminals 4-5. The AU signal must be turned ON to use the terminal 4.
171 Speed setting by analog input (terminal 2, 4) 4 P ARAME TERS 4.15.2 Setting the speed by analog i nput (voltage input/current input) POINT T u rn ON the STF(STR) signal to give a start command. Use the potentiome ter (speed setting pote ntiometer) (voltage input) or 4-to -20mA input (current input) to give a speed command.
172 Speed setting by analog input (terminal 2, 4) 4.15.3 Response level of analog input and noise elimination (Pr .74) The above paramet ers can be set when Pr .160 Extended fu nction display s election = "0". (Refer to page 182) V alid for eliminating noise of the speed setting circuit.
173 Speed setting by analog input (terminal 2, 4) 4 P ARAME TERS 4.15.4 Bias and gain of speed setting voltage (current) (Pr .125, Pr .126, Pr .241, C2 (Pr .902) to C7 (Pr .905)) [S peed setti ng bias/gain parameter] This parameter can be set when Pr .
174 Speed setting by analog input (terminal 2, 4) (3) Analog input display unit changing (Pr .241) Y ou can change the analog input display uni t (%/V/mA) for analog input bias/gain calibration. Depending on the termin al input specificati on set to Pr .
175 Speed setting by analog input (terminal 2, 4) 4 P ARAME TERS (4) S peed setting signal (c urrent) bias/gain adjustment method (a) Method to adjust any point by application of a voltage (current) across terminals 2 an d 5 (4 and 5).
176 Speed setting by analog input (terminal 2, 4) (b) Method to adjust any point without application of a vol tage (current) across terminals 2 and 5 (4 and 5) (T o change from 4V (80%) to 5V (100%)) Operation Display 1. Confirm the operation status indicator and operation mode indicator The drive unit should be at a stop.
177 Speed setting by analog input (terminal 2, 4) 4 P ARAME TERS (c) Adjusting only the speed withou t adjusting the gain voltage (current). (When changing the gain speed from 3000r/min to 1500r/min) Operation Display 1. T urn until (Pr .125) or (Pr .
178 Misoperation prevention and para meter setting restriction 4.16 Misoper ation prev ention and par ameter setting restriction 4.16.1 Reset selection/disconnected PU detection/PU stop selection (Pr .75) (1) Reset selection Y ou can select the enabl e condition of reset function (RES signa l, reset command through communication) input.
179 Misoperation prevention and pa rameter setting restrictio n 4 P ARAME TERS (2) Disconne cted PU detection This function detects that the PU (FR-PU07) has been disconne cted from the drive unit for longer th an 1s and causes the drive unit to provide a fault out put (E.
180 Misoperation prevention and para meter setting restriction (5) Rest art (PS reset) method when PU stop (PS display) is made du ring PU operation PU stop (PS display) is made when the motor is stopped from the unit where control command source is not selected (operation panel, parameter unit (FR-PU07) in the PU operation mode.
181 Misoperation prevention and pa rameter setting restrictio n 4 P ARAME TERS 4.16.2 Parameter write di sable selection (Pr .77) (1) Write p arameters only during stop (setting "0" initial val ue) Parameters can be written only dur ing a stop in the PU operation mode.
182 Misoperation prevention and para meter setting restriction 4.16.3 Revers e rotation prevention selection (Pr .78) Set this parameter when you want to limit the motor rot ation to only one direction.
183 Misoperation prevention and pa rameter setting restrictio n 4 P ARAME TERS 4.16.5 Password functi on (Pr .296, Pr .297) (1) Parameter reading /writing restriction level (Pr .296 ) Level of reading/wri ting restriction by PU/N ET mode operation command can be selected by Pr .
184 Misoperation prevention and para meter setting restriction (2) Passwo rd lock/un lock (Pr .296, Pr .297 ) <Lock> 1) Set parameter rea ding/writing restrictio n level. ( Pr .296 9999) 2) Write a four-digit numb er (1000 to 9998) in Pr .297 as a password.
185 Misoperation prevention and pa rameter setting restrictio n 4 P ARAME TERS (3) Parame ter operation durin g p assword lock/unlock Parameter operation Unlocked Password registered Locked Pr .296 = 9999 Pr .297 = 9999 Pr .296 9999 Pr .297 = 9999 Pr .
186 Selection of operation mode and operation location 4.17 Selection of oper ation mode and operation loca tion 4.17.1 Operation mode selection (Pr .79) Purpose Parameter to set Refer to page T o select operation mode Operation mod e selection Pr .79 186 T o st art up in Network operation mo de Operation mode at power-ON Pr .
187 Selection of operation mode and operation location 4 P ARAME TERS (1) Operation mode basics (2) Operation mode switching method The operation mode specifies the source of the start command and the speed command for the drive unit. Basically , there are following opera tion modes.
188 Selection of operation mode and operation location (3) Operat ion mode selectio n flow In the following flowchart, select the basi c parameter settin g and termi nal connection related to the operation mod e.
189 Selection of operation mode and operation location 4 P ARAME TERS (4) External ope ration mode (setting "0" (init i al value), "2") (5) PU operatio n mode (setting "1".
190 Selection of operation mode and operation location (6) PU/External combined opera tion mode 1 (setting "3 ") (7) PU/External combined opera tion mode 2 (setting "4 ") (8) Switc.
191 Selection of operation mode and operation location 4 P ARAME TERS (9) PU opera tion inte rlock (setting "7 ") The PU operation interlock function is designed to forcib ly change the o peration mode to the External opera tion mode when the PU operation interlock signal (X12) input turns OFF .
192 Selection of operation mode and operation location (10) Switching of operation mode by external signal (X16 signal) When external opera tion and operation from the operation panel are used tog.
193 Selection of operation mode and operation location 4 P ARAME TERS When switching between the Network oper atio n mode and External operation mode 1) Set Pr .79 to "0 (initial value), 2, 6 or 7". (At the Pr .79 setting of "7", the operation mo de can be switched when the X12 (MRS) signal turns ON.
194 Selection of operation mode and operation location 4.17.2 Operation mode at power-ON (Pr .79, Pr .340) (1) Specify opera tion mode at power- on (Pr .340) Depending on the Pr .79 and Pr .340 settings, the operation mode at po wer-on (reset) changes as described below .
195 Selection of operation mode and operation location 4 P ARAME TERS 4.17.3 S tart command source and speed command source during communication operation (Pr .338, Pr .3 39, Pr .550, Pr .551) (1) Select the command source of the Network operation mode (Pr .
196 Selection of operation mode and operation location (2) Select s the command sourc e of the PU o peration mode (Pr .55 1) Any of the operation panel, PU connector can be specif ied as the command source in the PU operation mode. In the PU operation mode, set Pr .
197 Selection of operation mode and operation location 4 P ARAME TERS (3) Controllability through communication Controllability th rough communication in each operation mode is shown belo w . Monitoring and parameter read can be performed fr om any op eration regardless of operation mode.
198 Selection of operation mode and operation location (4) Operation at error occurrence Can be selected using Pr .75 Reset sele ction/disconnected PU de tection/PU stop selection . Can be selected using Pr .122 PU communication check time interval , Pr .
199 Selection of operation mode and operation location 4 P ARAME TERS (5) Selectio n of command source in Network operation mode (Pr .338, Pr .339) There are two control sources: operation command.
200 Selection of operation mode and operation location (6) Switching of co mmand source by external si gnal (X67) In the Network operatio n mode, the Comm and source switchove r signal (X67) c an be used to switch the start command source and speed co mmand source.
201 Communication opera tion and setting 4 P ARAME TERS 4.18 Communication operation and setting 4.18.1 Wiring and configuration of PU connector Using the PU connector , you can perform commu nic ation operation from a personal computer etc.
202 Communication oper ation and setting (2) PU connector communica tion system configuration Connection of a computer to the drive unit (1:1 connection) Combination of a computer and multiple drive unit s (1:n connection) REMARKS Refer to the following when fabricating the cable on the user side.
203 Communication opera tion and setting 4 P ARAME TERS (3) Connec tion with RS-485 comput er Wiring of one RS-48 5 computer and one drive unit Wiring of one RS-485 compu ter and "n" (multiple) drive unit s Make connection in accordance with the inst ruction manual of the computer to be used with.
204 Communication oper ation and setting 4.18.2 Initial settings and specif ications of RS-485 communication (Pr .1 17 to Pr .120, Pr .123, Pr .124, Pr .549) Used to perform required setting s for RS-485 communi cation between the drive un it and person al computer .
205 Communication opera tion and setting 4 P ARAME TERS 4.18.3 Operation selec tion at communication error occurrence (Pr .121, Pr .1 22, Pr .502) (1) Retry count setting (Pr .121) Set the permissible number of retri es at data receive error occurrence.
206 Communication oper ation and setting (2) Signal loss detection (Pr .122) If a signal loss (communication stop ) is detected between the drive unit and master as a resu lt of a signal loss detectio n, a communication fault (E.PUE) occurs and the drive unit trips.
207 Communication opera tion and setting 4 P ARAME TERS (3) S top operation selection at occ urrence of communication fault (Pr .502) S top operation when retry count excess (Mitsubishi inverter pr otocol only) or signal loss detection e rror occurs can be selected.
208 Communication oper ation and setting 4.18.4 Communication EEPROM write selection (Pr .342) When changing the parameter values frequen tly , set "1" in Pr .
209 Communication opera tion and setting 4 P ARAME TERS 4.18.5 Mitsubishi inverter protoc ol (computer link communication) (1) Communica tion The communication specifica tions are given below . (2) Communic ation procedure If a data error is detected and a retry must be mad e, execute retry operati on with the user program.
210 Communication oper ation and setting (3) Communicat ion operation presence/abs ence and dat a format types Data communication between the computer and drive un it is made in ASC II code (hexadecimal code).
21 1 Communication opera tion and setting 4 P ARAME TERS Data reading format Communication request data from th e comp uter to t he drive unit 1) Reply data from the drive unit to the computer 3) .
212 Communication oper ation and setting (4) Dat a definitions 1) Control code 2) Drive unit station number S pecify the station numb er of the drive u nit which comm unica tes with the computer . 3) Instruction code S pecify the pro cessing request, e.
213 Communication opera tion and setting 4 P ARAME TERS 7) Error code If any error is found in the data received by the drive unit, it s defin ition is sent back to th e computer together with the NAK code.
214 Communication oper ation and setting (6) Instructions for the progra m 1) When data from the computer has any error , the drive uni t doe s not accept that data. Hence, in the user program, always insert a retry program for data error . 2) All data communication, e.
215 Communication opera tion and setting 4 P ARAME TERS General flowchart Port open Communication setting T ime out setting Send data processing Data setting Sum code calculation Data tran.
216 Communication oper ation and setting (7) Setting items and set dat a After completion of p arameter settings, set the instruction co des and data then start communication from the computer to allow various types of operation control and monitoring.
217 Communication opera tion and setting 4 P ARAME TERS Drive unit reset Write HFD H9696: resets the drive unit. As the drive unit is reset at start of communication by the computer , the drive unit cannot send reply data back to the computer . 4 digits (A,C/D) H9966: resets the drive unit.
218 Communication oper ation and setting Example) When readi ng the C3 (Pr .902) and C6 (Pr .904) settings from the drive unit of station 0 T o read/write C3 (Pr .902) and C6 (Pr .904) after drive unit reset or parameter clear , execute from 1) again .
219 Communication opera tion and setting 4 P ARAME TERS [Fault da t a] Refer to page 267 for details of fault description [Run command] The signal is the d efault setting. The desc ription changes de pending on the setting of Pr .18 0 to Pr .184 (input terminal function s election) (page 138) .
220 Communication oper ation and setting [Drive unit st atus monitor] The signal within parenth eses is the default setting. Definiti ons change according to the Pr .
221 Communication opera tion and setting 4 P ARAME TERS [Multi command (HF0)] Sending data format from computer to drive unit Reply data format from drive unit to computer (No data error detected) S pecify the data type of sending data (from co mputer to drive unit ).
222 Communication oper ation and setting 4.18.6 Modbus-RTU communication specifications (Pr .1 17, Pr .1 18, Pr .120, Pr .122, Pr .343, Pr .502, Pr .549) Using the Modbus-RTU communication protocol, communicati on operation or parameter setting can be performed from the PU connector of the drive unit.
223 Communication opera tion and setting 4 P ARAME TERS (1) Communica tion The communication specifica tions are given below . (2) Outline The Modbus protoc ol is the communication p rotocol develope d by Modicon for PL C. The Modbus protocol performs serial communication between the master and slave using the de dicated message frame.
224 Communication oper ation and setting (3) Message format Data check time 1) Query The master sends a message to the slave (= drive unit) at the specified add ress. 2) Normal Response After receiving the query from the master , the slave executes the req uested function and returns the corresponding normal response to the master .
225 Communication opera tion and setting 4 P ARAME TERS (4) Message fram e (protocol) Communication method Basically , the master sends a query message (question) and the slave returns a response message (response).
226 Communication oper ation and setting (5) Message format types The message formats corresponding to the function codes in T able 1 on page 225 will be explained.
227 Communication opera tion and setting 4 P ARAME TERS Write holding register data (H06 or 06) Can write the descripti on of 1) system environment variables and 4) drive unit parameters assigned to the hol ding register area (refer to the register list (page 231) ).
228 Communication oper ation and setting Function diagnos is (H08 or 08) A communication check can be made since the query message sent is returned unchanged as a response message (function of sub function code H00).
229 Communication opera tion and setting 4 P ARAME TERS Description of normal response 1) to 4) (including CRC check) of the normal res ponse are the same as those of the query message . Read holding re gister access log (H46 or 70) A response can be made to a query made by the function code H03 or H10.
230 Communication oper ation and setting Error respon se An error response is returned if the query message rece ived from the master has an ille gal function, addre ss or data. No response is returned for a parity , CRC, overrun, framing or busy error .
231 Communication opera tion and setting 4 P ARAME TERS (6) Modbus registers System environment variable The communication paramet er values are not cleared. For write, set the data as a control input instruction. For read, data is re ad as a drive unit operating status.
232 Communication oper ation and setting Real time monitor Refer to page 156 for details of the monitor description. When Pr .37 = "0.01 to 9998", displayed in integr al number .
233 Communication opera tion and setting 4 P ARAME TERS Faults history Fault code list Model info rmation monitor (7) Pr .343 Communication error count Y ou can check the cumulative number of communication errors.
234 Communication oper ation and setting 4 . 1 8 . 7 U S B c o m m u n i c a t i o n (Pr . 547, Pr . 548) Changed settin g value is va lid when powe ring on or resetting the drive un it. USB communication specifications Y ou can perform parameter setting and monitoring with the FR Configurator .
235 Special operation and speed control 4 P ARAME TERS 4.19 Special oper ation and speed control 4.19.1 PID control (Speed control) (Pr .127 to Pr .134) Purpose Parameter to set Refer to page T o perform process control such as pump and ai r volume PID control Pr .
236 Special operation and speed control (1) PID control basic configuration Pr .128 = "20, 21" (measured value input) (2) PID action overview 1) PI action 2) PD action 3) PID action A co.
237 Special operation and speed control 4 P ARAME TERS 4) Reverse operation Increases the manipulate d variable (rotation speed) if deviation X = (set point - measured valu e) is positive, and decreases the manipulated variable if deviation is negative.
238 Special operation and speed control (4) I/O signals and paramet er setting Set "20, 21, 50, 51, 60 or 61" in Pr .128 to perform PID operation. Set "14" in any of Pr .178 to Pr .184 (input te rminal functio n selection) to assign PID control select ion signal (X14) to turn the X14 signal ON.
239 Special operation and speed control 4 P ARAME TERS (5) PID automatic sw itchover cont rol (Pr .127) The system can be started up witho ut PID control only at a start.
240 Special operation and speed control (7) Adjustment procedure (8) Calibration example (A detector of 4mA at 0°C and 20mA at 50°C is used to adjust the room temperature to 25°C under PID control. The set point is given to across drive unit terminals 2-5 (0 to 5V).
241 Special operation and speed control 4 P ARAME TERS <Set point input calibration> 1. Apply the input voltage of 0% set point setting (e.g. 0V) across terminals 2-5. 2. Enter in C2 (Pr .902) the speed which should be ou tput by the drive unit at t he deviation of 0% (e.
242 Special operation and speed control 4.19.2 Regeneration avoidance function (Pr . 665, Pr .882, Pr .883, Pr .885, Pr .886) (1) What is re generation avoidanc e function? (Pr . 882, Pr .883) When the regeneration load is la rge , the DC bus voltage rises and an overvoltage fault (E.
243 Special operation and speed control 4 P ARAME TERS (3) Regeneration avoida nce function adjustment (Pr .665, Pr .886) If the speed becomes instable during regeneratio n avoidance operatio n, decrease the setting of Pr .886 Regeneration avoidance voltage gain .
244 Useful functions 4.20 Useful functions 4.20.1 Cooling fan operati on selection (Pr . 244) In either of the following cases, fa n oper ation is regarded as fau lty , [FN] is show n on the operation panel, and the fan fault (F AN) and alarm (LF ) signals are output.
245 Useful functions 4 P ARAME TERS 4.20.2 Display of the life of the drive unit parts (Pr .255 to Pr .259) Degrees of deterioration of main circuit capacitor , control circ uit capacitor , cooling fan and inrush current limit circuit can be diagnosed by monitor .
246 Useful functions (1) Life alarm display and signal output (Y90 signal, Pr .255 ) Whether any of the control circuit capacitor , main circuit ca pacitor and inrush current li mit circuit has reached the life alarm output level or not can be checked by Pr .
247 Useful functions 4 P ARAME TERS (4) Main circuit capacitor life display (Pr .258 , Pr .259) The deterioration degree of the co ntro l circuit capacitor is displayed in Pr .258 as a life. On the assumption that the main circui t capacitor capacit ance at factory shipmen t is 100%, the capacitor life is di splayed in Pr .
248 Useful functions (5) Cooling fan life display The cooling fan speed of 50% or less is detected and "FN" is displayed on the operation panel and parameter unit (FR- PU07). As an alarm display , Pr . 255 bit2 is turned on and also an ala rm is output to the Y90 signal.
249 Useful functions 4 P ARAME TERS 4.20.4 Current average value monit or signal (Pr .555 to Pr .557) The pulse output of the curr ent average va lue monitor signal (Y93) is shown above .
250 Useful functions 2) Setting of Pr .555 Current avera ge time The average output current i s calculated during Hi output of start pulse (1s). Set the time taken to average the current during start pulse output in Pr .
251 Useful functions 4 P ARAME TERS 4.20.5 Free parameter (Pr .888, Pr .889) Y ou can input any number within the setting range 0 to 9999. For example, the number can be used: As a unit number when multiple units are used. As a pattern number for each operation application when multiple units are used.
252 Useful functions 4.20.6 Initiating a fault (Pr .997) The above paramet ers can be set when Pr .160 Ex tended func tion disp lay selectio n = "0". (Refer to page Refer to page 182) ...... S pecifications differ acco rding to the date assemb led.
253 Useful functions 4 P ARAME TERS 4.20.7 Batch setting Mitsubishi HMI ( GOT) connection parameters (Pr . 999) The read value is always "9999." ....... S pecifications dif fer according to the date assembl ed. Refer to page 316 to check the SE RIAL numbe r .
254 Useful functions (2) Automatic para meter setting using the oper ation p anel (p arameter setting mode) Operation example The communication setting p arameters for the GOT connection with a PU connector are automatically set. are displayed alternately .
255 Setting fr om the parame ter unit and oper ation panel 4 P ARAME TERS 4.21 Setting fr om the par ameter unit and oper ation panel 4.21.1 RUN key rotation direction selection (Pr .
256 Setting from the paramete r unit and operation panel 4.21.2 Setting-dial potentiometer mode/k ey lock operation selection (Pr .161) The above paramet ers can be set when Pr .
257 Setting fr om the parame ter unit and oper ation panel 4 P ARAME TERS (2) Using the setting dial like a potentiometer to set the spe ed Operation example Changing the spee d from 0r/min to 1800r/min during operation Operation Display 1. Screen at power-ON The monitor display appears.
258 Setting from the paramete r unit and operation panel (3) Disable the sett ing dial a nd key o peration of the operation panel (Pres s [MODE] long (2s)) Operation using the setting d ial and key of the operat ion panel can be invalid to p revent parameter change, and unexpected start or speed setting.
259 Setting fr om the parame ter unit and oper ation panel 4 P ARAME TERS 4.21.3 Magnitude of spee d change setting (Pr .295) The above parameter can be set when Pr .
260 Setting from the paramete r unit and operation panel 4.21.4 Buzzer control (Pr .990) The above parameter can be set when Pr .160 Extended function display selection = "0".
261 4 P ARAME TERS Parameter clear/ All parameter clear 4.22 Parameter clear/ All parameter c lear POINT Set "1" in Pr .CL Parameter clear , ALLC All paramet er clear to initialize all parameters. (Parameters are not cleared when "1" is set in Pr .
262 Initial value change list 4.23 Initial value change list Displays and sets the parameters changed from the initial value. Operation Display 1. Screen at power-ON The monitor display appears. 2. Press to choose the PU operation mode. PU indicator is ON.
263 Check and clear of th e faults history 4 P ARAME TERS 4.24 Check and c lear of the faults histor y (1) Check for the fault s history When an overcurrent tr ip occurs by an inst antaneous overcurre nt, the monitored curre nt value saved in the fa ults history ma y be lower than the actual current that has flowed.
264 Check and clear of th e faults history (2) Clearing procedure POINT Set "1" in Er .CL Fault history clear to clear the fault s history . Operation Display 1. Screen at power-ON The monitor display appears. 2. Press to choose the parameter setting mode.
265 3 5 4 6 7 2 1 5 TR OUBLESHOO TING This chapter provides the "TROUBLESHOOTING" of this product. Always read the instructions before using the equipment. 5.1 Reset method of protective funct ion .......................................... 266 5.
266 Reset method of pr otective function When a fault occurs in the drive unit, t he drive unit trips and the PU disp lay autom atical ly changes to one of the following fa ult or alarm indicati ons. If the fault does not correspond to any of the following faults or if you have any other pr obl em, please contact your sales representative.
267 5 TROUBLESHOOTING List of fault or alarm indications 5.2 List of fault or alar m indications Appears only when used with FR-E7DS. ....... Specificati ons differ according to the da te assembled. Refer to page 316 to check the SERIAL number .
268 Causes and corrective actions 5.3 Causes and cor rective actions (1) Error message A message regarding operational troubles is displayed. Output is not shutoff. Operation pane l indication HOLD Name Operation panel lock Description Operation lock mode is set.
269 5 TROUBLESHOOTING Causes and corrective actions (2) W arnings When a warning o ccurs, the output is n ot shut off. Operation pa nel indication Err . Name Drive unit reset Description Executing reset using RE S signal, or reset command from communication or PU Displays at powering OFF .
270 Causes and corrective actions Operation pane l indication PS FR-PU07 PS Name PU stop Description S top with of the PU is set in Pr .75 Reset selection/disconnected PU detection/PU stop selection . ( For Pr .75 r efer to page 178 .) Check point Check for a stop made by pre ssing of the operation panel.
271 5 TROUBLESHOOTING Causes and corrective actions ........S pecifications differ according to the date assembled . Refer to page 316 to check the SERIAL number . (3) Alarm When an alarm occurs, the output is not s hut off. Y ou can also output an alarm signal by making parameter setting.
272 Causes and corrective actions (4) Fault When a fault occurs, the drive unit trips and a fault signal is output. Operation panel indication E.OC 1 FR-PU07 OC During Acc Name Overcurrent trip during.
273 5 TROUBLESHOOTING Causes and corrective actions Resetting the drive unit initi alizes the internal therma l integrated data of the electronic thermal relay function .
274 Causes and corrective actions Operation pane l indication E.FIN FR-PU07 H/Sink O/T emp Name Heatsink overheat Description If the heatsink overheats, the temperature s ensor is actuated and the drive unit trips. The FIN signal can be output when the temperature becomes approximately 85% of the heatsink overheat protection operation temperature.
275 5 TROUBLESHOOTING Causes and corrective actions Operation pa nel indication E.SOT FR-P U07 Motor step out Name Loss of synchronism detection Description S tops the output when the operation is not synchronized. Check point Check that the PM motor is not drive n overloaded.
276 Causes and corrective actions Operation pane l indication E.OP1 FR-PU07 Option slot alarm 1 Name Communication option fault Description S tops the drive unit output when a communication line fault occurs in the communication option. Check point Check for a wrong option function setting and operation.
277 5 TROUBLESHOOTING Causes and corrective actions Operation pa nel indication E.PUE FR-PU07 P U Leave Out Name PU disconnection Description This function stops the drive unit output if communica tion between the drive unit and PU is suspended, e.
278 Causes and corrective actions Operation pane l indication E.OS FR- PU07 E.OS Name Overspeed occurrence Description T rips the drive unit if the motor speed exceeds Pr .374 Overspeed detection level . Check point Check that Pr .374 O verspeed detection level is ap propriate.
279 5 TROUBLESHOOTING Correspondences between digita l and actual characters 5.4 Cor respondences between digital and actual character s There are the following correspondences between the actual alph anu meric characters and the di gital characters displayed on the operation panel: Operation p anel indication E.
280 Check first when you have a trouble 5.5 Check firs t when you hav e a tr ouble 5.5.1 Motor does not start POINT If the cause is still unknown after ever y che ck, it is recommended to initiali ze the parameters (initial value) then set the required parameter values and check again.
281 Check first when you have a trouble 5 TROUBLESHOOTING 5.5.2 Motor or machine is making abnormal acoustic noise Input Signal Under position control, the forward rotation stroke end (LSP) or the reverse rotation stroke end (LSN) signal is assigned, but is not input.
282 Check first when you have a trouble 5.5.3 Motor generates heat abnormally 5.5.4 Motor rotates in the opposite direction 5.5.5 Spee d greatly differs from the setting Check Points Possible Cause Countermeasures Refer to pa ge Motor The required space is not provided around the mo tor .
283 Check first when you have a trouble 5 TROUBLESHOOTING 5.5.6 Acceleration/dece leration is not smooth 5.5.7 Speed varies during operation Check Points Possib le Cause Countermeasures Refer to pa g e Parameter Setting T orque limit function is activated due to a heavy loa d.
284 Check first when you have a trouble 5.5.8 Operation mode is not changed properly 5.5.9 Operation panel di splay is not operating 5.5.10 Motor current is too large Check Points Possible Cause Countermeasures Refer to pa ge Input Signal S tart signal (STF or STR) is ON.
285 Check first when you have a trouble 5 TROUBLESHOOTING 5.5.1 1 Speed does not accelerate 5.5.12 Unable to write parameter setting Check Points Possib le Cause Countermeasures Refer to pa g e Input Signal S tart command and speed command are chattering.
286 MEMO.
287 3 5 4 7 2 1 6 6 P RECA UTIONS FOR MAINTEN ANCE AND INSPECTI ON This chapter provides the "P RECAUTIONS FOR MAINTENANCE AND INSPECTION" of this product. Always read the instructions before using the equipment. 6.1 Inspection items........
288 Inspection items The drive unit is a static unit mainly consisting of semicondu ctor devices. Daily insp ection mu st be performed to prevent any fault from occurring due to the adverse effects of.
289 6 PRECAUTIONS FOR MAINTE NANCE AND INSPE CTION Inspection items 6.1.3 Daily and periodic inspection It is recommended to insta ll a device to monitor voltage fo r checking the power supply voltage to the drive unit. One to two year s of periodic in spection cycle is recommende d.
290 Inspection items 6.1.4 Display of the life of the drive unit parts The self-diagnostic warning is output when th e life span of each pa rt such as the control circuit capacitor , the cooli ng fan, o r the inrush current limit circu it is near its end .
291 6 PRECAUTIONS FOR MAINTE NANCE AND INSPE CTION Inspection items 6.1.5 Checking the drive unit and converter modules <Prepa ration> (1) Disconnect the external power supply cables (R/L1, S/L2, T/L3) an d mo tor cables (U, V , W). (2) Prepare a tester .
292 Inspection items 6.1.7 Replacement of parts The drive unit co nsists of many electr onic part s such as semiconductor devices. The following parts may deteriorate with age becau se of their structures or physical characteristics, leading to red uced performance or fault of the drive un it.
293 6 PRECAUTIONS FOR MAINTE NANCE AND INSPE CTION Inspection items Reinstallation 1) After confirming the orie ntation of the f an, reinstall the fan so tha t the arrow on the lef t of "AIR FLOW" faces up. 2) Reconne ct the fan connectors.
294 Inspection items (2) Smoothing cap acitors A large-capacity aluminum electrolytic capacitor is used for smoothing in the main circuit DC secti on, and an aluminum electrolytic capacitor is used for stabilizing the control power in the control circuit.
295 6 PRECAUTIONS FOR MAINTENANCE AND INSPECTION Measurement of main circuit voltages, currents and powers 6.2 Measurement of main cir cuit voltages, cur rents and powers Since the voltages and currents on the drive unit power supp ly and output side s include harmo nics, measurement data depends on the instruments used and circuits measured.
296 Measurement of main circuit voltages, currents and powers Measuring Point s and Instrument s Item Measuring Point Measuring In strumen t Remarks (Reference Meas ured V alue) Power supply voltage V.
297 6 PRECAUTIONS FOR MAINTENANCE AND INSPECTION Measurement of main circuit voltages, currents and powers 6.2.1 Measurement of powers Use electro-dynamometer type meters (for inverter) for the b oth of drive unit input and output side.
298 Measurement of main circuit voltages, currents and powers 6.2.3 Measureme nt of currents Use moving-iron type mete rs on the input side of the drive un it, use appro ximate effective-valu e rectifier type AC ammeter on the output side.
299 6 PRECAUTIONS FOR MAINTENANCE AND INSPECTION Measurement of main circuit voltages, currents and powers 6.2.7 Measurement of drive unit output frequency A pulse train proportional to the output frequency is output across the frequ ency mete r signal output termina l FM-SD of the drive unit.
300 MEMO.
301 3 4 5 6 7 2 1 7 SPECIFICA TIONS This chapter provides the "SPECI FICA TIONS" of this product. Always read the instructions before using the equipment. 7.1 Rating ......................................................................... .
302 Rating 7.1 Rating Three-phase 200V powe r supply Model FR-E720EX- K 0.1 0.2 0.4 0.75 1. 5 2.2 3.7 Output Rated current (A) 0.8 1.5 3 5 8 11 17.
303 7 SPECIFICA TIONS Common specifications 7.2 Common specifications Motor MM-GKR motor S-PM geared motor Control specifications Control method PM sensor less vector control (low-speed r ange: curren.
304 Common specifications Operation sp ecificati ons St art signal Forward and reverse rotation or start signal autom atic self-holding input (3-wire input) can be selected. Input sign al (seven terminals) The following signals can be assigned to Pr .
305 7 SPECIFICA TIONS Outline dimension drawings 7.3 Outline dimension drawings FR-E720EX-0.1K to 0.75K FR-E720EX-1.5K, 2.2K 4 D D1 Rating plate 5 68 56 5 118 5 128 φ 5 hole Capacity plate Rating plate 4 D2 D1 When used with the plug-in option Drive Unit Model D D1 D2 When used with FR-A7NC E kit When used with FR-E7DS FR-E720EX-0.
306 Outline dimension drawings FR-E720EX-3.7K Parameter unit (opti on) (FR-PU07) <Outline drawing> <Enclosure cut dimension drawing> Enclosure surface operation panel (option) (FR-P A07) <Outline drawing> <Enclosure cut dimension drawi ng> 5 158 170 5 118 5 128 5 142.
307 7 SPECIFICA TIONS Specifications of the dedicat ed PM motor [MM-GKR motor] 7.4 Specifica tions of the dedicated PM motor [MM-GKR motor] 7.4.1 Motor specifications St andard specifications The above characteristics apply when th e rated AC voltage is input from the dri ve unit ( Refer to page 303 ).
308 Specifications of the dedicat ed PM motor [MM-GKR motor] X indicates the direct ion of the motor's output shaf t, and Y indi cates the di rection vertical to the motor's outpu t shaft. Usua lly , the indi cated value i s of the non-load side bracket where the vibration is the greatest.
309 7 SPECIFICA TIONS Specifications of the dedicat ed PM motor [MM-GKR motor] This value is a value at the shaft of the motor with a reduction gear . If the value exceeds the descri bed value, please cont act your sales representative. The reduction gear ef ficiency differs depend ing on the reduction ra tio.
310 Specifications of the dedicated PM motor [S-PM geared motor] 7.5 Specifica tions of the dedicated PM motor [S-PM geared motor] 7.5.1 Motor specifications Model names of S-PM geared motors For the model names of the flange type s and brake-equipped types, refer to t he catalog.
31 1 7 SPECIFICA TIONS Specifications of the dedicated PM motor [S-PM geared motor] 7.5.2 Motor torque charac teristic <<Initial setting( Pr .785 =9999(=100%))>> The short-time torque can be up to 100% in low speed (3 00r/min) operation, but continuous oper ation is not available.
312 MEMO.
313 APPENDIX This chapter provides the "A PPENDIX" of this product. Always read the instructions before using the equipment..
314 The control method is PM sensorless vector control. Several restriction s are app lied because the encoder is not provided among other reasons. When using this drive unit and a se nsorless PM motor , always check the ma chine operation in the actu al system.
315 Others T he available power supply input is th ree-phase 200 to 240V only . Only the e lectronic thermal O/L relay is provided as the tem perature protective fu ncti on. (Servo motor: Electronic thermal O/L relay and encoder thermistor , M M-GKR: Electronic thermal O/L relay) In the low-speed range (75 0r/min or lower for the 0.
316 Installation When a suspension tool is provided for a moto r , carry the mo tor using the suspension tool. When a motor is used for a lift, install a safety device on th e machine side. There is a risk that a lifted cargo, etc. may fal l off.
317 Numerics 15-speed selection (REX sig nal) .............. ............ ......... 11 7 , 138 24V external powe r supply operat ion (EV signal) ............... 144 A Acceleration error (E.OA) .............. ............ .......... ............ ......
318 G Gain adjustment o f position contro l (Pr.422, Pr.423, Pr.4 27, Pr.427, P r.446, Pr.46 3, Pr.698, Pr.877) ..... ............ .......... ...92 H Harmonic suppression gui deline in Japan ... ......... ............. ..... 39 Heatsink overheat (E.FIN) .
319 Position control sud den stop (X87 signal) .......... ............ ..... 138 Position detected (FP signa l) . .......... ............ ......... ............ ..... 144 Power supply harmonics ....... ............ ......... ............ .......... ..
320 REVISIONS *The manual number is given on the bottom left of the back cover . For Maximum Safety • Mitsubishi drive units are not designed or manufactured to be used in equipment or systems in situations that can affect or endanger human life.
FR-E700EX INSTRUCTION MANUAL (Applied) SENSORLESS SER VO DRIVE UNIT FR-E700EX SENSORLESS SER VO DRIVE UN IT INSTRUCTION MANUAL (Applied) B 3 PRECAUTIONS FOR USE OF THE DRIVE UNIT 4 P ARAMETERS 5 TROUB.
Ein wichtiger Punkt beim Kauf des Geräts Mitsubishi Electronics FR-E700EX (oder sogar vor seinem Kauf) ist das durchlesen seiner Bedienungsanleitung. Dies sollten wir wegen ein paar einfacher Gründe machen:
Wenn Sie Mitsubishi Electronics FR-E700EX noch nicht gekauft haben, ist jetzt ein guter Moment, um sich mit den grundliegenden Daten des Produkts bekannt zu machen. Schauen Sie zuerst die ersten Seiten der Anleitung durch, die Sie oben finden. Dort finden Sie die wichtigsten technischen Daten für Mitsubishi Electronics FR-E700EX - auf diese Weise prüfen Sie, ob das Gerät Ihren Wünschen entspricht. Wenn Sie tiefer in die Benutzeranleitung von Mitsubishi Electronics FR-E700EX reinschauen, lernen Sie alle zugänglichen Produktfunktionen kennen, sowie erhalten Informationen über die Nutzung. Die Informationen, die Sie über Mitsubishi Electronics FR-E700EX erhalten, werden Ihnen bestimmt bei der Kaufentscheidung helfen.
Wenn Sie aber schon Mitsubishi Electronics FR-E700EX besitzen, und noch keine Gelegenheit dazu hatten, die Bedienungsanleitung zu lesen, sollten Sie es aufgrund der oben beschriebenen Gründe machen. Sie erfahren dann, ob Sie die zugänglichen Funktionen richtig genutzt haben, aber auch, ob Sie keine Fehler begangen haben, die den Nutzungszeitraum von Mitsubishi Electronics FR-E700EX verkürzen könnten.
Jedoch ist die eine der wichtigsten Rollen, die eine Bedienungsanleitung für den Nutzer spielt, die Hilfe bei der Lösung von Problemen mit Mitsubishi Electronics FR-E700EX. Sie finden dort fast immer Troubleshooting, also die am häufigsten auftauchenden Störungen und Mängel bei Mitsubishi Electronics FR-E700EX gemeinsam mit Hinweisen bezüglich der Arten ihrer Lösung. Sogar wenn es Ihnen nicht gelingen sollte das Problem alleine zu bewältigen, die Anleitung zeigt Ihnen die weitere Vorgehensweise – den Kontakt zur Kundenberatung oder dem naheliegenden Service.