Benutzeranleitung / Produktwartung CH530 des Produzenten American Standard
Zur Seite of 116
CDHF-SVU01C-EN X39640670030 Operation Maintenance Duplex CDHF , CDHG W ater Cooled CenT raV ac ™ With CH530.
© 2005 American Standard All rights reserved CDHF-SVU01C-EN Warnings and Cautions Warnings and Cautions Notice that warnings and cautions appear at appropriate intervals throughout this manual.
3 Contents CDHF-SVU01C-EN Warnings and Cautions General Information Unit Control Panel (UCP) Operator Interface Chilled Water Setpoint Inter Processor Communication (IPC) Control System Components Con.
CDHF-SVU01C-EN 4 T ypical Product Description Block MODL CDHF DSEQ 2R NTON 2500 VOL T 575 REF 123 HRTZ 60 TYPE SNGL CPKW 142 CPIM 222 TEST AIR EVTM IECU EVTH 28 EVSZ 032S EVBS 280 EVWC STD EVWP 2 EVWT.
5 CDHF-SVU01C-EN General Information Model Number - An example of a typical duplex centrifugal chiller model number is: CDHF2100AA0BC2552613C0B203B0 B20KJAC1GW40C111340A010 Digit: Description 1 st -2 .
CDHF-SVU01C-EN 6 General Information V = 1890 W = 2060 X = 1475 Z = 560 - 3 stage 935 - 2 stage Y = 500 - 3 stage 835 - 2 stage 1 = 630 - 3 stage 2245 - 2 stage 2 = 800 - 3 stage 2345 - 2 stage 3 = 90.
7 CDHF-SVU01C-EN General Information Commonly Used Acronyms For convenience, a number of acronyms are used throughout this manual. These acronyms are listed alphabetically below , along with the “tr.
CDHF-SVU01C-EN 8 General Information Figure 1. General Duplex unit components - front view Overview CDHF - CDHG See Figure 1 for General Unit components.
9 CDHF-SVU01C-EN General Information Figure 2. General Duplex unit components (2 stage compressor).
CDHF-SVU01C-EN 10 General Information Cooling Cycle Duplex Chillers have two refrigerant circuits that operate as their own independent circuits. These circuits are discussed as individual chiller refrigeration units in the following discussion. The sequence of operation of the two refrigeration circuits is discussed in a later section.
11 CDHF-SVU01C-EN Figure 3. Pressure enthalpy curve (3 stage compressor) Figure 4. 2-stage economizer (3 stage compressor) General Information.
CDHF-SVU01C-EN 12 Figure 5. Pressure enthalpy curve (2 stage compressor) Figure 6. Single stage economizer (2 stage compressor) General Information.
13 CDHF-SVU01C-EN Overview Controls Operator Interface Information is tailored to operators, service technicians and owners. When operating a chiller , there is specific information you need on a day-to-day basis — setpoints, limits, diagnostic information, and reports.
CDHF-SVU01C-EN 14 General Information CTV Duplex Sequence Of Operation This section will provide basic information on chiller operation for common events. With microelectronic controls, ladder diagrams cannot show today’ s complex logic, as the control functions are much more involved than older pneumatic or solid state controls.
15 CDHF-SVU01C-EN General Information Figure 8. CDHE/F/G sequence of operation: auto to running This diagram shows the sequence of operations for a start of the first compressor on a duplex chiller . The ‘First’ compressor will be determined by the type of duplex start selected.
CDHF-SVU01C-EN 16 General Information Figure 11. CDHE, CDHF and CDHG sequence of operation: normal shutdown to stopped and run inhibit Figure 10. CDHE/F/G sequence of operation: staging second compres.
17 CDHF-SVU01C-EN General Information Duplex Compressor Sequencing Four methods (T wo fixed sequence methods, a balanced start and hour’ s method, and a no staging method) are provided for order of a compressor sequencing on CTV Duplex chillers. The desired method is selectable at startup via the service tool.
CDHF-SVU01C-EN 18 General Information Fixed Sequence – Compressor 2 / Compressor 1 If the chiller is in the Auto mode and all interlocks have been satisfied, compressor 2 will be started based on the leaving water temperature rising above the “Differential to Start” setting.
19 CDHF-SVU01C-EN General Information Sequencing - Balanced Starts and Hours When desired to balance the wear between the compressors. This method will extend the time between maintenance on the lead compressor . When balanced starts and hours is selected, the compressor with the fewest starts will start.
CDHF-SVU01C-EN 20 General Information Simultaneous Compressor Start/ Stop Both compressors will start in close succession to minimize the time it takes for the chiller to reach full load. Some process applications need the chiller to start and generate capacity as fast as possible.
21 CDHF-SVU01C-EN General Information Compressor Load Balancing Duplex chillers with CH530 control will balance the compressor load by giving each compressor the same load command. The load command will be converted to IGV position that will be the same on each compressor .
CDHF-SVU01C-EN 22 General Information Oil and Refrigerant Pump Compressor Lubrication System - A schematic diagram of the compressor lubrication system is illustrated in Figure 16.
23 CDHF-SVU01C-EN General Information Figure 16. Oil refrigerant pump - circuit 1 or 2.
CDHF-SVU01C-EN 24 General Information Base Loading Control Algorithm: This feature allows an external controller to directly modulate the capacity of the chiller . It is typically used in applications where virtually infinite sources of evaporator load and condenser capacity are available and it is desirable to control the loading of the chiller .
25 CDHF-SVU01C-EN General Information Figure 17. Base loading with external mA input and with external voltage input.
CDHF-SVU01C-EN 26 General Information Ice Machine Control UCP provides a service level “Enable or Disable” menu entry for the Ice Building feature when the Ice Building option is installed.
27 CDHF-SVU01C-EN General Information Hot Water control Occasionally CTV chillers are selected to provide heating as a primary mission. With hot water temperature control, the chiller can be used as a heating source or cooling source. This feature provides greater application flexibility .
CDHF-SVU01C-EN 28 Unit Control Panel (UCP) Control Panel Devices and Unit Mounted Devices Unit Control Panel (UCP) Safety and operating controls are housed in the unit control panel, the starter panel and the purge control panel. The UCP ‘s operator interface and main processor is called the DynaView ™ (DV) and is located on the UCP door .
29 CDHF-SVU01C-EN Unit Control Panel (UCP) T racer CH530 Chiller Controller Revolutionary control of the chiller , chilled water system, and your entire building with unprecedented accuracy , reliability , efficiency , and support for maintenance using the chiller’ s PC-based service tool.
CDHF-SVU01C-EN 30 Operator Interface Figure 21. DynaView ™ main processor The DynaView ™ (DV) Operator Interface contains the “Main Processor (MP)” and is mounted on the unit control panel fro.
31 CDHF-SVU01C-EN Operator Interface DynaView ™ (DV) is the operator interface of the T racer CH530 control system utilized on the CTV machine. The DynaView ™ enclosure is 9.75" wide, 8” high and 1.6” deep. The DynaView ™ display is approximately 4” wide by 3” high.
CDHF-SVU01C-EN 32 Operator Interface The Auto and Stop keys are used to put the unit into the auto or stop modes. Key selection is indicated by being darkened (reverse video). The Alarms button is to the right of the Stop key . The Alarms button appears only when alarm information is present.
33 CDHF-SVU01C-EN Operator Interface The machine-operating mode indicates the operational status of the chiller . A subscreen with additional mode summary information will be provided.
CDHF-SVU01C-EN 34 Operator Interface Reference T op Level Mode Sub Level Mode BAS Code SYSTEM RESET Boot & Application software part number , self-test, and configuration validity screens will be present.
35 CDHF-SVU01C-EN Operator Interface Reference T op Level Mode Sub Level Mode BAS Code W aiting T o Start Motor T emperature Inhibit: Motor T emperature / Inhibit T emperature 7 0 W aiting T o Start R.
CDHF-SVU01C-EN 36 Operator Interface Main Screen The main screen is provides “an overall view“ of the chiller performance in addition to the main and sub operating modes. The table below indicates other items found , when specified by options, that can be scrolled to via the up or down arrows.
37 CDHF-SVU01C-EN Operator Interface Diagnostic Screen The diagnostic screen is accessible by touching the Alarms enunciator . When an alarm is present, the alarm enunciator is present next to the Stop key . A flashing “alarm” indicates a machine shutdown and a non flashing “alarm” indicates an informational message.
CDHF-SVU01C-EN 38 Operator Interface The chilled water reset status area in the right most column will display one of the following messages: Return, Constant Return, Outdoor , None The left column te.
39 CDHF-SVU01C-EN Operator Interface The left column text “Front Panel”, “BAS”, “External”, and “Active Current Limit Setpoint” will always be present regardless of installation or enabling those optional items.
CDHF-SVU01C-EN 40 Operator Interface Reports T o aid in comparing the status of both circuits, the heading on the Reports list screen has buttons as indicated in the table above (i.e., System, Ckt1, and Ckt2). The selected button is darkened, presented in reverse video, or some how changed to indicate it is the selected choice.
41 CDHF-SVU01C-EN Operator Interface Report name: System Evaporator Description Resolution Units Dependencies 1. Evap Entering W ater T emp + or – XXX.X T emperature 2. Evap Leaving W ater T emp + or – XXX.X T emperature 3. Evap Water Flow Switch Status (Flow , No Flow) 4.
CDHF-SVU01C-EN 42 Operator Interface Report name: System ASHRAE Chiller Log Description Resolution Units Dependencies 1. Current T ime/Date XX:XX mmm dd, yyyy Date / T ime 2. Chiller Mode: Enum 3. Active Chilled Water Setpoint: XXX.X T emperature 4. Active Current Limit Setpoint: X X X % RLA 5.
43 CDHF-SVU01C-EN Operator Interface Setting T ab screens provides a user the ability to adjust settings justified to support daily tasks. The layout provides a list of sub-menus, organized by typical subsystem. T o change chilled water setpoint, first select the settings tab screen.
CDHF-SVU01C-EN 44 Operator Interface Chiller Description Resol ution or (Enumerati ons), Default Units 1. Front Panel Control T ype (Chilled W ater , Hot Water), Chilled W ater Enum 2. Front Panel Chilled Water Setpt ( 3) + or – XXX.X T emperature 3.
45 CDHF-SVU01C-EN Operator Interface System Mode Overrides Description Resol ution or (Enumerations), Default Units Monitor V alue 1. Compressor XXX / (Auto,Manual [0-100] ), Auto Enum I G V % O p e n Control Signal Evap. L WT AFD Freq. 2. Evap Water Pump (Auto, On), Auto Enum 1) Evap Flow status 2) Override T im e Remaining 3.
CDHF-SVU01C-EN 46 Operator Interface Each Settings Sub screen consists of a setpoints list and the current value. The operator selects a setpoint to change by touching either the description or setpoint value. Doing this causes the screen to switch to the Analog Settings Subscreen shown below .
47 CDHF-SVU01C-EN Operator Interface Settings with buttons only [screen has no cancel or enter key] do accept the new selection immediately . Mode Override for Enumerated Settings is shown below: Note: Radio 1 and Radio 2 refer to “touch sensitive buttons.
CDHF-SVU01C-EN 48 Operator Interface The mode override analog setting subscreen is similar but offers an Auto or Manual radio button and value setting. An Auto or Manual selection is necessary set to the mode to override. An Enter and Cancel Key will allow the user to Enter or Cancel the entry .
49 CDHF-SVU01C-EN Operator Interface The time setpoint screen with a 12-hour format is shown below: The user must select Hour , or Minute and then use the up or down arrows to adjust. Adjusting hours will also adjust am and pm. Note: The 24-hour format setpoint screen is similar with the am and pm not shown.
CDHF-SVU01C-EN 50 Operator Interface The DynaView ™ Display T ouch Screen Lock screen is shown below . This screen is used if the Display and T ouch Screen Lock feature is Enabled. 30 minutes after the last key stroke this screen will be displayed and the Display and T ouch Screen will be locked out until “159enter” is entered.
51 CDHF-SVU01C-EN Control Panel Internally mounted devices For visual identification Internal Control Panel mounted devices are identified by their respective schematic designation number . Control panel items are marked on the inner back panel in the control panel.
CDHF-SVU01C-EN 52 Control System Components Figure 24. Control panel components layout.
53 CDHF-SVU01C-EN Control System Components.
CDHF-SVU01C-EN 54 Control System Components Control Panel Devices Standard Devices Controls Field Connection Description Package Purpose Point T erminals 1A1 Power Supply Standard # 1 C onverts 24 vac.
55 CDHF-SVU01C-EN Head Relief Request Output When the chiller is running in Condenser Limit Mode or in Surge Mode, the head relief request relay on the 1A9–J2-6 to J2-4 will be energized (1 minute default) and can be used to control or signal for a reduction in the entering condenser water temperature.
CDHF-SVU01C-EN 56 Control System Components EXOP Extended Operation Option The following modules (1A17, 1A18, and 1A19) are provide when this control package is specified.
57 CDHF-SVU01C-EN Control System Components TRMM TRM4 (T racer Comm 4 interface) 1A14 Optional TRM4 T racer Communications J2-1 COMM+, J2-2 COMM -J2-3, Communication o r COMM +J2-4, COMM -, Interface .
CDHF-SVU01C-EN 58 Control System Components CDRP Refrigerant Pressure Output Option 1A15: Refrigerant Pressure Output can be configured at commissioning to correspond to either A) the absolute condenser pressure, or B) the differential pressure of the evaporator to condenser pressures.
59 CDHF-SVU01C-EN Control System Components B) Refrigerant Differential Pressure Indication Output: A 2 to 10 VDC analog output is provided instead of the previous condenser pressure output signal. This signal corresponds to a predetermined minimum and maximum pressure settings setup at commissioning of this feature.
CDHF-SVU01C-EN 60 Control System Components GBAS (Generic Building Automation System) 1A15 Optional Dual GBAS Signal #1 Percent RLA Compressor Output J2-1 Output #1, J2-3 Ground Analog Input/ output M.
61 CDHF-SVU01C-EN Control System Components External Chilled Water Setpoint (ECWS) The External Chilled Water Setpoint allows the chilled water setpoint to be changed from a remote location. The External Chilled Water Setpoint is found on 1A16 J2-5 to J2-6 (Ground).
CDHF-SVU01C-EN 62 Control System Components 1A8, 1A9, 1A11, 1A12 Quad Relay Output Status: Relay #1 J2-1 NO, J2-2 NC, J2- common Relay #2 J2-4 NO, J2-5 NC, J2-6 common Relay #3 J2-7 NO, J2-8 NC, J2-9 common Relay #4 J2-10 NO, J2-11 NC, J2-12 common Relay Outputs: at 120 V AC: 7.
63 CDHF-SVU01C-EN Control System Components 1A15, 1A16, 1A17, 1A21 Dual Analog Input/output Module; Analog Output: The Analog Output is a voltage only signal. 2-10 Vdc at 22mA J2: 14 - 26 A WG with a maximum of two 14 A WG J2-1 Output #1 to J2-3 (Ground), J2-4 Output #2 to J2-6 (Ground).
CDHF-SVU01C-EN 64 Control System Components Unit mounted devices V ane Actuator Control The Stepper Module within the stepper vane actuator (4M2) (and 4M4 extended capacity) pulses a DC voltage to the windings of the Stepper Motor Actuator(s) to control inlet guide vane position.
65 CDHF-SVU01C-EN Control System Components.
CDHF-SVU01C-EN 66 Control System Components.
67 CDHF-SVU01C-EN Electrical Sequence This section will acquaint the operator with the control logic governing CDHF/CDHG chillers equipped with T racer CH530 UCP based control systems.
CDHF-SVU01C-EN 68 When less than 5 seconds remain before compressor start, a starter test is conducted to verify contactor states prior to starting the compressor . The following test or start sequence is conducted for ‘‘Wye-Delta’’ starters: Also refer to Figure 24.
69 CDHF-SVU01C-EN Now that the compressor motor (4M1) is running in the ‘‘Delta’’ configuration, the inlet guide vanes will modulate, opening and closing to the chiller load variation by operation of the stepper vane motor actuator (4M2) 4M4 (extended capacity) to satisfy chilled water setpoint.
CDHF-SVU01C-EN 70 Interval Minimum Maximum Units Actual Design A. (T est for transition complete input open) 160 to 240 milliseconds B. (Just delay time) 20 milliseconds C. (Close 1M (2K1) Contactor and test for no current.) (Starter integrity test) 500 m illiseconds D.
71 CDHF-SVU01C-EN Current passing through circuit breaker 1Q5 reaches 2 normally open parallel sets of contacts: those of refrigerant and oil pump relay (1A7- J2-5 to 1), and the 2K11 interlocking relay .
CDHF-SVU01C-EN 72 Momentary Power Loss (MPL) Protection. Improved power measurement and protection algorithms allow the unit to accommodate more power anomalies than ever . If the chiller must shut down, faster restarts get the machine up and running as soon as possible.
73 CDHF-SVU01C-EN Current Overload Protection Motor currents are continuously monitored for over current protection and locked rotor protection. This protects the Chiller itself from damage due to current overload during starting and running modes but is allowed to reach full load amps.
CDHF-SVU01C-EN 74 Current Limit Protection Current Limit Protections exist to avoid motor current overload and damage to the compressor motor during starting and running. Compressor motor current is continuously monitored and current is controlled via a limit function that to prevent running into over current diagnostic trips.
75 CDHF-SVU01C-EN Differential to Start or Stop The Differential to Start setpoint is adjustable from 1 to 10°F (0.55 to 5.55°C) and the Differential to Stop setpoint adjustable from 1 to 10°F (0.55 to 5.55°C). Both setpoints are with respect to the Active Chilled Water Setpoint.
CDHF-SVU01C-EN 76 Evaporator Limit Evaporator refrigerant temperature is continuously monitored to provide a limit function that prevents low refrigerant temperature trips which allows the chiller to continue to run at a reduced load instead of tripping off at the Low Evaporator Refrigerant T emperature Cutout Setpoint (LRTC).
77 CDHF-SVU01C-EN Low Refrigerant T emperature Cutout The purpose of the low evaporator refrigerant temperature protection is to prevent water in the evaporator from freezing. When the Low Evaporator Refrigerant T emperature Cutout (LRTC) trip point is violated, a latching diagnostic indicating the condition is displayed.
CDHF-SVU01C-EN 78 Figure 31. Cutout strategy Machine Protection and Adaptive Control Limit Loading: The potential to limit loading increases as the saturated evaporator temperature approaches the evaporator limit setpoint.
79 CDHF-SVU01C-EN Condenser Limit Condenser pressure is continuously monitored to provide a limit function that prevents High Pressure Cutout (HPC) trips.
CDHF-SVU01C-EN 80 Restart Inhibit This function provides short cycle protection for the motor , and indirectly also short cycling protection for the starter since the starter is designed to operate the motor under all the conditions of motor performance.
81 CDHF-SVU01C-EN High V acuum Lockout The oil sump pressure is below the lockout setpoint. Starting of compressor is inhibited as a result. Low Oil T emperature Star t Inhibit The oil temperature is at or below the low oil temperature start inhibit setpoint (143°F/61.
CDHF-SVU01C-EN 82 Oil T emperature Control The oil heater is used to maintain the oil temperature within +/- 2.5°F (1.4°C) of the oil temperature control setpoint.
83 CDHF-SVU01C-EN Controls Chilled Water Reset (CWR) Chilled water reset is designed for those applications where the design chilled water temperature is not required at partload. In these cases, the leaving chilled water temperature setpoint can be reset upward using the CWR features.
CDHF-SVU01C-EN 84 T able 3. V alues for start reset types The values for “RESET TYPE” are: Reset Outdoor Return Const Return T ype: Disable Air Reset Reset Reset The values for “RESET RA TIO” .
85 CDHF-SVU01C-EN Reset Ratio: The Reset Ratio is displayed as a percentage. T o use it in the above equation it must be converted to it’ s decimal form. Reset Ratio percent /100 = Reset Ratio decimal Example of converting Reset Ratio: If the Reset Ratio displayed on the CLD is 50 percent then use (50/100)= .
CDHF-SVU01C-EN 86 Figure 33. Reset function for return CWR Note: This graph assumes Maximum Reset is set to 20 degrees. Figure 34. Reset function for return CWR Machine Protection and Adaptive Control.
87 CDHF-SVU01C-EN Example of Calculating Return Reset: If: Reset Ratio = 50% Start Reset = 25 TWE = 65 TWL = 45 Maximum Reset = 8 How many Degrees of Reset will there be? Degrees of Reset = Reset Ratio*(Start Reset - (TWE-TWL)) Degrees of Reset = .5*(25-(65-45)) Degrees of Reset = 2.
CDHF-SVU01C-EN 88 Figure 35. Return CWR Figure 36. Constant CWR Machine Protection and Adaptive Control.
89 CDHF-SVU01C-EN Unit Start-Up Procedures Daily Unit Start-Up 1. V erify the chilled water pump and condenser water pump starter are in “ON” or “AUTO”. 2. V erify the cooling tower is in “ON” or “AUTO”. 3. Check both oil tank oil level(s); the level must be visible in or above the lower sight glass.
CDHF-SVU01C-EN 90 When the cooling requirement is satisfied, the UCP originates a “Shutting down” signal. The inlet guide vanes are driven closed for 50 seconds, and the unit enters a 3- minute post-lube period.
91 CDHF-SVU01C-EN Unit Shutdown Procedures Daily Unit Shutdown Note: Refer to Start-Run Shutdown sequence in General Information Overview Sequence of Operation. 1. Press STOP . 2. After compressor and water pumps shutdown turn Pump Contactors to OFF or open pump disconnects.
CDHF-SVU01C-EN 92 Overview This section describes the basic chiller preventive maintenance procedures, and recommends the intervals at which these procedures should be performed. Use of a periodic maintenance program is important to ensure the best possible performance and efficiency from a CenT raV ac ® chiller .
93 CDHF-SVU01C-EN W ARNING Hazardous V oltage w/Capacitors! Disconnect all electric power , including remote disconnects before servicing. Follow proper lockout/ tagout procedures to ensure the power cannot be inadvertently energized.
CDHF-SVU01C-EN 94 [ ] Complete all recommended quarterly maintenance procedures. [ ] Lubricate the vane control linkage bearings, ball joints, and pivot points; as needed a few drops of light machine oil (SAE-20) is sufficient. [ ] Lubricate vane operator tang o-rings as described in the maintenance section.
95 CDHF-SVU01C-EN Oil Maintenance Compressor Oil Change It is recommended to change the oil and oil filter: • After the first 1000 hours of chiller operation. For a chiller operated continuously this oil and oil filter change may be performed as soon as 1.
CDHF-SVU01C-EN 96 Oil Maintenance Replacing Oil Filter Replace oil filter: (1) annually , (2) at each oil change, (3) or if erratic oil pressure is experienced during chiller operation. Oil Filter Replacement Use the following procedure to service the oil filter .
97 CDHF-SVU01C-EN Maintenance Other Maintenance Requirements Compressors using new seal technology will not use O-rings. The O-ring has been replaced by Loctite 515 applied at a minimum film thickness of .010 applied across the width of the flange. The current jack bolt holes remain for disassembly .
CDHF-SVU01C-EN 98 Maintenance DO NOT LEA VE GREASE FITTINGS INST ALLED. If grease fittings have been used for this procedure then they MUST BE REMOVED before returning the unit to service. Grease fittings are not vacuum-tight and will become a leak path.
99 CDHF-SVU01C-EN Maintenance Refrigerant Charge W ARNING Contains Refrigerant! System contains oil and refrigerant and may be under positive pressure. Recover refrigerant to relieve pressure before opening the system. See unit nameplate for refrigerant type.
CDHF-SVU01C-EN 100 Maintenance Recovery and Recycle Connections T o facilitate refrigerant removal and replacement, newer -design CDHF , CDHG units are provided with a 3/4- inch vapor fitting with shutoff valve on the chiller suction and with a 3/4- inch liquid connection with shutoff valve at the bottom of the evaporator shell.
101 CDHF-SVU01C-EN Maintenance Condenser tube fouling is indicated when the approach temperature (the difference between the condensing refrigerant temperature and the leaving condenser water temperature) is higher than predicted.
CDHF-SVU01C-EN 102 Maintenance Purge System Because some sections of the chiller’ s refrigeration system operate at less-than-atmospheric pressure, the possibility exists that air and moisture may leak into the system.
103 CDHF-SVU01C-EN Maintenance W ARNING Live Electrical Components! During installation, testing, servicing and troubleshooting of this product, it may be necessary to work with live electrical components.
CDHF-SVU01C-EN 104.
105 CDHF-SVU01C-EN.
CDHF-SVU01C-EN 106.
107 CDHF-SVU01C-EN.
CDHF-SVU01C-EN 108.
109 CDHF-SVU01C-EN.
CDHF-SVU01C-EN 110.
111 CDHF-SVU01C-EN.
CDHF-SVU01C-EN 112.
113 CDHF-SVU01C-EN.
CDHF-SVU01C-EN 114.
115 CDHF-SVU01C-EN.
T rane has a policy of continuous product and product data improvement and reserves the right to change design and specifications without notice. Only qualified technicians should perform the installation and servicing of equipment referred to in this publication.
Ein wichtiger Punkt beim Kauf des Geräts American Standard CH530 (oder sogar vor seinem Kauf) ist das durchlesen seiner Bedienungsanleitung. Dies sollten wir wegen ein paar einfacher Gründe machen:
Wenn Sie American Standard CH530 noch nicht gekauft haben, ist jetzt ein guter Moment, um sich mit den grundliegenden Daten des Produkts bekannt zu machen. Schauen Sie zuerst die ersten Seiten der Anleitung durch, die Sie oben finden. Dort finden Sie die wichtigsten technischen Daten für American Standard CH530 - auf diese Weise prüfen Sie, ob das Gerät Ihren Wünschen entspricht. Wenn Sie tiefer in die Benutzeranleitung von American Standard CH530 reinschauen, lernen Sie alle zugänglichen Produktfunktionen kennen, sowie erhalten Informationen über die Nutzung. Die Informationen, die Sie über American Standard CH530 erhalten, werden Ihnen bestimmt bei der Kaufentscheidung helfen.
Wenn Sie aber schon American Standard CH530 besitzen, und noch keine Gelegenheit dazu hatten, die Bedienungsanleitung zu lesen, sollten Sie es aufgrund der oben beschriebenen Gründe machen. Sie erfahren dann, ob Sie die zugänglichen Funktionen richtig genutzt haben, aber auch, ob Sie keine Fehler begangen haben, die den Nutzungszeitraum von American Standard CH530 verkürzen könnten.
Jedoch ist die eine der wichtigsten Rollen, die eine Bedienungsanleitung für den Nutzer spielt, die Hilfe bei der Lösung von Problemen mit American Standard CH530. Sie finden dort fast immer Troubleshooting, also die am häufigsten auftauchenden Störungen und Mängel bei American Standard CH530 gemeinsam mit Hinweisen bezüglich der Arten ihrer Lösung. Sogar wenn es Ihnen nicht gelingen sollte das Problem alleine zu bewältigen, die Anleitung zeigt Ihnen die weitere Vorgehensweise – den Kontakt zur Kundenberatung oder dem naheliegenden Service.