Benutzeranleitung / Produktwartung PM-3380B des Produzenten Fluke
Zur Seite of 297
I $ XWRUDQJLQJ &RPEL6FRSH ,QVWUXPHQW 30% 30% 30% 30% 30% SCPI Users Manual 02/- Nov-1998 ®.
II TRADEMARKS Microsoft, and Microsoft QuickBASIC are tradem arks of Microsoft Corporation. IBM is a registered trademark of Inte rnational Business Machine s Corporation. CombiScope is a trademar k of Fluke Corp oration. PCIIA is a trademark of National Instruments Corporation.
III CONTENTS Page 1 ABOUT THIS MANUAL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-1 1.1 What this Manual Contains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-1 2 GETTING STARTED WITH SCPI PROGRAMMING . . 2-1 2.1 Preparations for SCPI Programming .
IV 3.3 Measuring Signa l Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . 3-8 3.3.1 The MEASure? query . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-8 3.3.2 Benefits of using parameters . . . . . . . . . . . . . . . . . .
V 3.9 Post Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-45 3.9.1 How to do post processing . . . . . . . . . . . . . . . . . . . . . . . . . 3-45 3.9.1.1 Select the source for the post processing function. .
VI 3.16 Saving/Restoring Instrument Setups . . . . . . . . . . . . . . . . . . . . . 3-78 3.16.1 How to restore initial settings . . . . . . . . . . . . . . . . . . . . . . . 3-78 3.16.2 How to save/restore a se tup via instrument memory . . . . . 3-78 3.
VII B CROSS REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-1 B.1 Cross Reference Front Panel Keys / Commands . . . . . . . . . . B -1 B.2 Cross Reference Softkey Menus / Commands . . . . . . . . . . . . B-3 B.2.1 ACQUIRE menu .
ABOUT THIS MANUAL 1 - 1 1 ABOUT THIS MANUAL The SCPI Programming Manua l for the CombiScope instrumen ts describes how to program your CombiScop e instrument via the IEEE bus using SCPI commands. 1.1 What this Manual Contains A complete table of contents is given at the begin nin g of the manual.
1 - 2 ABOUT THIS MANUAL Appendix A APPLICA TION PROGRAM EXAMPLE S Appendix A describes som e application program e xamples. The application programs are sup plied on floppy . Appendix B CROSS REFERENCES Appendix B gives cross references between SCPI com mands and front panel keys, softkey menu options, and instrume nt functions.
GETTING STARTED WITH SCPI PROGRAMMING 2 - 1 2 GETTING ST ARTED WITH SCPI PROGRAMMING 2.1 Preparations for SCPI Programming T o program your CombiScope instrument, you need a system setup and a programming envir onment. V arious program example s (refer to PROGRAM EXAMPLE:) are given in the following section s.
2 - 2 G ETTING STARTED WITH SCPI PROG RAMMING The parameters of thes e drivers are defined by the device handler GPIB.COM and by the QuickBASIC prog ram code. The following drive rs and pa rameters ar e used in the program examples: • The IEEE-488.2 driver "Send " is used to send a command or query to an instrument.
GETTING STARTED WITH SCPI PROGRAMMING 2 - 3 • <response> A response string sent by the i nstrument as a response to a query . • <eot> An "end of text" indication: 0 = program.
2 - 4 G ETTING STARTED WITH SCPI PROG RAMMING 2.2 Initializing the CombiScope Instrument 2.2.1 How to reset the CombiScope instrument The instrument itself can be reset by sending the * RST command. This sets th e instrument to a fi xed setup optimized for remote o peration.
GETTING STARTED WITH SCPI PROGRAMMING 2 - 5 2.3 Error Reporting Instrument errors are u sually caused by programmin g or setting errors. They are reported by the in strument during the execu tion of each comman d. T o ma ke sure that a program is running properly , you must query the instrument for possible er - rors after every functional command.
2 - 6 G ETTING STARTED WITH SCPI PROG RAMMING 2.4 Acquiring T races T race acquisitions are starte d via the INIT iate commands. A sin gle acquisition is done by sending a single INIT iate command. Continuou s acquisitions are done by sending the INIT iate:CONT inuous ON command.
GETTING STARTED WITH SCPI PROGRAMMING 2 - 7 2.4.1 How to acquire a single shot trace In the program example, a single shot trace acquisition of 8192 8-bit samples is done with a probe connected to input channel 1. The trace samp le bytes are read from the GPIB as string characters.
2 - 8 G ETTING STARTED WITH SCPI PROG RAMMING 2.4.2 How to acquire repetitive traces In the program example, 5 trace acquisition s of 512 16-bit samples are done via a probe connected to channel 2. The trace sample byte s a re read from th e GPIB as string characters and written to the file TRACE5.
GETTING STARTED WITH SCPI PROGRAMMING 2 - 9 2.5 Measuring Signal Characteristics The measurement instructions allo w you to make a complete measurement. This includes the configuration of the instrument, the initiation of the trigger system, and the fetching of the acquisi tion data.
2 - 10 GETTING STARTED WI TH SCPI PROGRAMMING 2.5.1 How to make a single shot measurement The MEASure? query allows you to make a single-shot measu rement, and the FETCh? query allows you to fetch more signal characteristics. PROGRAM EXAMPLE: ’ ***** ’Measure and print t he AC-RMS, peak to peak, and ampl itude of ’the signal on chann el 1.
USING THE COMBISCOPE INSTRUMENTS 3 - 1 3 USING THE COMBISCOPE INSTRUMENTS 3.1 Introduction This chapter explains how to access the functions of the CombiS cope instruments family in a re mote p rog rammin g en viro nmen t.
3 - 2 USI NG THE COMBISCOPE INSTRUMENTS As the example already shows, the co mmands are easy to learn and self- explanatory to both novice and expert user s. The learning curve is considerably decreased for new i nstruments or in strument functio ns with which the programmer is no t familiar .
USING THE COMBISCOPE INSTRUMENTS 3 - 3 3.2 Fundamental Programming Concepts The remote operation of your CombiScope instrumen t can be accessed using different programming concepts. The concept to be cho sen depends upon the application of the instrument in the remote programming enviro nment.
3 - 4 USI NG THE COMBISCOPE INSTRUMENTS T rade-off: This way of progr amming is cumbersome and tricky , because additional information on the front panel disp lay is not always available remotely . Example: DISPlay:MENU TRIGger Activates the TRIGGER softkey menu.
USING THE COMBISCOPE INSTRUMENTS 3 - 5 The measurement instructions are easy to use and do not require any special knowledge of the instrumen t. The programming concept reduces simple measurement tasks with complex instruments to simple instructions, leaving the setup complexity to the instrument.
3 - 6 USI NG THE COMBISCOPE INSTRUMENTS Functions in a particular subsystem are always controlled by commands that begin with the name of that subsystem. For example, a command that programs the input coupling is INPut:COUPling DC. All programmable sett ings can be queried easily .
USING THE COMBISCOPE INSTRUMENTS 3 - 7 Example for the instrument cursor settings: Send → SYST em:SET? 32 Queries the oscilloscope for the instrument settings o f node 32, which are the cursor settings. Read ← <settings> Reads the cursor settin gs.
3 - 8 USI NG THE COMBISCOPE INSTRUMENTS 3.3 Measuring Signal Characteristics As explained in section 3.2.1 "Measure ment instructions", the measurement instruction set is a ne w approach in the remote op eration of programmable instruments. This instruction set allows you to reque st a particular characteristic of the input sig nal.
USING THE COMBISCOPE INSTRUMENTS 3 - 9 3.3.2 Benefits of using parameters The generic form of a me asurement instruction is as follows: MEASure[:VOL T age]:<measure_function>? [[<voltage_para.
3 - 10 USING THE COMBISCOPE INSTRU MENTS Examples: MEASure:AMPLitude? This query measures the amp litude of a waveform at the default inp ut channel 1. After the acquisition, the resulting ampli tude is returned. MEASure:VOL T age:AMPLitude? 10, (@2) This query measures the amplitude of a signal at channel 2 (@2).
USING THE COMBISCOPE INSTRUMENTS 3 - 11 3.3.3 W a veform measurements The following figure show s the terms used for pulse measurements and the key words that are used as header node s in th e mea surement instructi ons. The reference high and low parameters determine the de sired interval for ri se time and fall time me asurements.
3 - 12 USING THE COMBISCOPE INSTRU MENTS Examples: MEASure:F ALL:TIME? (@3) Measures the time inter val during which the p ulse at channel 3 decrea ses from 90% to 10% of its amplitude. MEASure:RISE:TIME? 20,80 Measures the tim e interval during whi ch the pulse at the d efault channel 1 increases from 20% to 80% of its ampli tude.
USING THE COMBISCOPE INSTRUMENTS 3 - 13 3.3.4 Customizing settings Often, you need more precise control of the me asurements than possible with the MEASure? query . The combination of CONFigure and READ? is pro vided to allow you to progra m one or more setti ngs that are vital to your applicatio n.
3 - 14 USING THE COMBISCOPE INSTRU MENTS READ? Requests to execute the default DC measuremen t. Since this is not possible with the ch osen configuration, an execution error is gen erated and no result is returne d. CONFigure:RISE:TIME Configures the CombiScope instrument to perform a rise time measurement.
USING THE COMBISCOPE INSTRUMENTS 3 - 15 READ:FREQuency? Starts the acquisition and returns the measu red frequency . READ:FREQuency? Starts a next acquisition and returns the new frequency result. READ:FREQuency? Etc. 3.3.6 Multiple characteristics from a single acquisition.
3 - 16 USING THE COMBISCOPE INSTRU MENTS 3.3.7 T rigger control via GPIB Y ou need a separate GPIB command to start a measurement synchronize d with other instruments. This is done by sending the * TRG command or the GET (Group Execute T rigger) co de.
USING THE COMBISCOPE INSTRUMENTS 3 - 17 3.3.8 Fetching characteristics from memory traces The FETCh? query not on ly allows you to determine a cha racteristic from the last acquired waveform, it a lso allows you to calculat e a signal characteri stic from a waveform that is stored in a trace memory element.
3 - 18 USING THE COMBISCOPE INSTRU MENTS 3.4 Acquisition 3.4.1 Acquisition control Several commands exist to control the acqu isition process. The following diagram shows the possible states of the acquisition process, and the way they ar e affected by commands.
USING THE COMBISCOPE INSTRUMENTS 3 - 19 or by setting INIT iate:CO NT inuous to ON. The INIT iate[:IMMediate] command causes the CombiScope instrument to perform one complete acquisition cycle. Upon completion of the cycle the instrument returns to the IDLE state.
3 - 20 USING THE COMBISCOPE INSTRU MENTS 3.4.1.1 T riggering After the measurement is in itiated, the CombiScope instrumen t starts the real acquisition when the trigger conditions are satisfie d, e.
USING THE COMBISCOPE INSTRUMENTS 3 - 21 T rigger Slope The TRIGger:SLOPe command allo ws you to define th e trig ger edge for all inp ut channels, which can be POSitive, NEGative, or EITHer . After a * RST command the TRIGger:SLOPe is set to POS itive.
3 - 22 USING THE COMBISCOPE INSTRU MENTS DC COUPLING (0 Hz cutoff frequency): DC coupling causes the signal to be passed over the full bandwidth (from 0 Hz to 60/100/200 MHz). PROGRAM EXAMPLE: *** *** Select DC coupli ng on input signal channel 2. SENSe:FUNCtion:ON "X TIMe:VOLTage2" Sets CH2 on.
USING THE COMBISCOPE INSTRUMENTS 3 - 23 LF-REJECT (30 KHz cutoff fr equency): LF reject (HF passed) ca uses the signal to be passed from the cu toff fre quency (30 KHz) to the full bandwidth freque ncy (60/100/2 00 MHz). PROGRAM EXAMPLE: TRIGger:FILTer:LPASs :STATe ON Sets Low-Pass filter on + cutoff freq uency = 0 Hz (DC coupling).
3 - 24 USING THE COMBISCOPE INSTRU MENTS The video trigger mode can be program med to field1, fi eld2, or lines using th e TRIGger:VIDeo:FIELd... commands. The video trigger line can be programme d using the TRIGger:VIDeo:LINE comma nd. The video system can be selected using the TRIGger:VIDeo:FORMat:.
USING THE COMBISCOPE INSTRUMENTS 3 - 25 3.4.1.3 The trigger modes A combination of the INIT iate:CONT inuous and TRIGger:SOURce command allows you to define the following trigger mode s: T able 3.
3 - 26 USING THE COMBISCOPE INSTRU MENTS Only in the single-shot and mu ltiple-shot trigger mode (INIT iate:CONTinuous OFF), the bits 3 (SW Eeping) and 5 (W aiting for TRIGger) in the OPERation status are valid. Also the Operation Complete bit (OPC bi t 0) in the standard Event Status Register (ESR) is va lid.
USING THE COMBISCOPE INSTRUMENTS 3 - 27 3.4.1.4 Pre- and post-trigger ing When pre-trigg ering is selected, the real tr ace acquisition begins b efore the moment that the trigger occurs.
3 - 28 USING THE COMBISCOPE INSTRU MENTS 3.4.1.5 External triggering External triggering is o nly possible for the PM33x0B Comb iScope instruments. Channel 4 is used as the externa l trigger channel with the following view possibilities: - a ttenuator positions 0.
USING THE COMBISCOPE INSTRUMENTS 3 - 29 3.4.2 Reading trace acquisitions Once acquisitions are completed, the resulting tr aces ares placed in TRACe memory , as shown in the following figure. The last acquired trace at input channel 1 is placed in the TRAC e memory element named CH1.
3 - 30 USING THE COMBISCOPE INSTRU MENTS 3.4.2.1 Single-shot acquisition PROGRAM EXAMPLE: In this example a single-shot trace acquisition is done via channel 1.
USING THE COMBISCOPE INSTRUMENTS 3 - 31 3.4.3 Conversion of trace data The trace data is sent as a block of binary codes. T race samples can be formatted to consist of 8 bits (1 byte) or 16 bits (2 bytes) codes, which can be selected by the FORMat command.
3 - 32 USING THE COMBISCOPE INSTRU MENTS 3.4.3.1 Conversion of 8-bit samples to in teger As an example a conversion of a trace of 512 "8-bit" samples is shown. The format is as follows: PROGRAM EXAMPLE: In this example a trace acquisitio n of 1 byte samples is done.
USING THE COMBISCOPE INSTRUMENTS 3 - 33 3.4.3.2 Conversion of 16-b it samples to integer As an example a conversion of a trace of 512 "16-bit" samp les is shown. The format is as follows: PROGRAM EXAMPLE: In this example a trace acquisitio n of 2 byte samples is done.
3 - 34 USING THE COMBISCOPE INSTRU MENTS 3.4.3.3 Conversion to voltag e values Screen positions correspon d to voltage values. This relation is shown in the figure below , and is determine d by the settings that are programmed by th e SENSe:VOL T age:RANGe:PTPeak and SENSe:VOL T age:RANGe:OFFSet commands.
USING THE COMBISCOPE INSTRUMENTS 3 - 35 PROGRAM EXAMPLE: In this program example a trace of 51 2 samples from the actual signal at input channel 1 is read. The received data block is converted to an array of voltages. After each sample conversion the voltage value is printed.
3 - 36 USING THE COMBISCOPE INSTRU MENTS 3.5 A veraging Acquisition Data Acquired traces and measured signal characteristics can be averaged over a number of acquisitions. The preprocessing A V ERAGE function of the CombiScopes instruments can be enabled by using the SENSe:A VERage[ST A T e] command.
USING THE COMBISCOPE INSTRUMENTS 3 - 37 The following diagram sh ows the possible states of the acqu isition process when "averaging" is o n, and the way th ey are af fected by commands.
3 - 38 USING THE COMBISCOPE INSTRU MENTS 3.6 Channel Selection Input channels can be swi tched on or of f by using the SENSe:FUNCti on[:ON] or SENSe:FUNCtion:OFF commands. An in put channel is selected by specifying the parameter "XTIMe:VOL T age<n>", where the numeric suf f ix <n> specifies the input channel n umber .
USING THE COMBISCOPE INSTRUMENTS 3 - 39 3.7 Signal Conditioning The INPut subsystem allows you to condition the input signals, such as AC/DC/GROund coupling, in put filteri ng, and input impedance selection.
3 - 40 USING THE COMBISCOPE INSTRU MENTS 3.7.2 Input filtering The INPut:FIL T er command allows you to turn the common low-pass filter (bandwidth limiter) on or off for all inp ut channels at the same time. The cutof f frequency is fixed at 20 MHz. After a * RST command, the filter is turned of f.
USING THE COMBISCOPE INSTRUMENTS 3 - 41 Because the programm ed PTPe ak and OFFSet values dire ctly af fect the trace values, they can be used to calculate the voltage amp litud e of the corresp on ding trace samples.
3 - 42 USING THE COMBISCOPE INSTRU MENTS 3.8 Time Base Control In the digital mode, the SENSe:SWEep:TIME:AUTO command allows you to enable autora nging of the main timeb ase (MTB). 3.8.1 Number of samples The TRACe:POINts command all ows you to set the number of sample points, which is the total acquisition length for all traces.
USING THE COMBISCOPE INSTRUMENTS 3 - 43 PROGRAM EXAMPLE: CALL Send(0, 8, "SEN Se:SWEep:TIME?, 1) ’ Requests sweep time CALL Receive(0, 8, S TIME$, 256) ’ Reads sweep time CALL Send(0, 8, &quo.
3 - 44 USING THE COMBISCOPE INSTRU MENTS 3.8.4 Autoranging time base The AUTO RANGE function of the Main T ime Base (MTB) adjusts the time base automatically , so that two to six wavefo rm peri ods a re displayed on the scr een .
USING THE COMBISCOPE INSTRUMENTS 3 - 45 3.9 Post Processing 3.9.1 How to do post processing The post processing functions CAL Culate1 and CALCulate2 comply with the front panel functions MA TH1 and MA TH2 of the CombiScope instr ument. They work only in the digital mode.
3 - 46 USING THE COMBISCOPE INSTRU MENTS 3.9.1.2 Specify the settings of the post processin g functio n. When desired, specify the settings of the post processing function to be used.
USING THE COMBISCOPE INSTRUMENTS 3 - 47 3.9.1.4 Check the result of the post processing function. The results of the post processing functions :MA TH :TRANsform:FREQuency :TRANsform:HIST ogram are stored i n M1_1 for CALCulate1 a nd in M2_1 for CALCul ate2, regardless of the input (feed) trace.
3 - 48 USING THE COMBISCOPE INSTRU MENTS 3.9.2 Mathematical calculations Mathematical calculati ons can be performed on 2 traces using the CALCulate1:MA TH and CALCulate2:MA TH functions. These functions comply with the front pane l features MA TH1 and MA TH2 respectively .
USING THE COMBISCOPE INSTRUMENTS 3 - 49 Scaling can be adjusted with the "CURSORS TRACK and delta" knobs via the MA THPLUS - P ARAM menu option.
3 - 50 USING THE COMBISCOPE INSTRU MENTS TRACE POINT V ALUES: FF T trace sample values, as entered with the TRACe:DA T A ? que ry , can be converted to FF T point value as follows: • Subtract from t.
USING THE COMBISCOPE INSTRUMENTS 3 - 51 Absolute FF T amplitudes are calculated from the tr ue signal using the information on the actual attenuator setting in the range from 5 V/div . to 2 mV/div . This results in an of fset value to be a dded to the relative FF T amplitude for each attenuator setting.
3 - 52 USING THE COMBISCOPE INSTRU MENTS dBm - 50 Ω offset calc ulation: From the V rms offset value the dBm-50 Ω of fset value is calculated as follows: Example for attenuator setting 0.
USING THE COMBISCOPE INSTRUMENTS 3 - 53 SUMMARY OF CALCULA TED OFFSE T V ALUES: Note: The PROGRAM EXAMPLE on the next page shows how it is programmed. TRACE POINT FREQUENCIES: The horizontal freq uenc.
3 - 54 USING THE COMBISCOPE INSTRU MENTS PROGRAM EXAMPLE: The following program example converts a relative or absolute FF T trace of 512 samples of 1 or 2 b ytes from the signal on channel 1 via the .
USING THE COMBISCOPE INSTRUMENTS 3 - 55 3.9.5 Histogram functions The HIST ogram function calculates an a mplitude distribution of the incoming trace. The number of points in the histogram trace is 512. Each point in the histogram specifies the number of times that a data point of the incoming trace is within a particular amplitude belt.
3 - 56 USING THE COMBISCOPE INSTRU MENTS 3.10 T race Memory The trace memory of the Comb iScopes instruments consists of space for channel acquisition traces (CH1 to CH4) and memo ry register traces (M1 to M8 and M9 to M50 extended).
USING THE COMBISCOPE INSTRUMENTS 3 - 57 The following table shows the relation between the trace acquisition length (TRACe:POINts) and the avai lab le channel (CHx) and memory traces (Mx).
3 - 58 USING THE COMBISCOPE INSTRU MENTS 3.10.2 Copying traces to memory The TRACe:COPY command allows you to copy the conten ts of a memory register to another memory register . This allows you to fill a memory register with traces from o ne of the following source s: • Copy an acquisition trace from one of the input cha nne ls.
USING THE COMBISCOPE INSTRUMENTS 3 - 59 3.10.3 Writing data to trace memory The TRACe command allows you to wri te data from the controller into a memory register . The following possibilities are available: • Write a previously read trac e usin g the TRACe? query .
3 - 60 USING THE COMBISCOPE INSTRU MENTS 3.10.4 Reading data from trace memory The TRACe? query allows you to r ead the contents from o ne of the following trac e memory registe rs: • An acquisition trace from one of the input ch an nels (CH1 to CH4).
USING THE COMBISCOPE INSTRUMENTS 3 - 61 3.1 1 Screen/Display Functions 3.1 1.1 Brightness control The DISPlay:BRIGhtness command allows you to control the brightness of the trace(s) displayed on th e scree n of your C omb iScope instru ment on a scale fro m 0.
3 - 62 USING THE COMBISCOPE INSTRU MENTS 3.1 1.2.1 Readout of measurement data The DISPlay:WINDow[1]:TEXT<n>:DA T A ? q uery allows you to acquire measured data as d isplayed on the u pper line(s) of the scre en of your CombiScope instr ument.
USING THE COMBISCOPE INSTRUMENTS 3 - 63 Example: Send → * RST ’Switches MEAS1 & 2 off Send → DISPlay:MENU MEASure ’Switches MEASURE menu on Send → SYST em:KEY 2;KEY 4 ’Switches MEAS1 and MEAS2 on Send → DISPlay:WINDow:TEXT1:DA T A? ’Requests MEAS1 data Read ← pkpk,6000E-04,V ’Response = peak-to-peak 0.
3 - 64 USING THE COMBISCOPE INSTRU MENTS PROGRAM EXAMPLE: Read and print th e DC and fr equency ch aracteristic of the actual signal u sing the MEAS1 and MEAS2 functions.
USING THE COMBISCOPE INSTRUMENTS 3 - 65 3.1 1.2.2 Display of user-defined text The DISPlay:WINDow2:TEXT commands allow you to define and clear the user text on the screen area of your CombiScope instrument. After a * RST command, the display of the previously defined user text is turned off.
3 - 66 USING THE COMBISCOPE INSTRU MENTS 3.12 Print/Plot Functions The HCOPy:DEV ice <TYPE> command allows you to select a hardcopy device. The following se lections can be ma de: The HCOPy:DA T A? query allows you to request a hard copy of the picture on the screen of your CombiScope instrument.
USING THE COMBISCOPE INSTRUMENTS 3 - 67 PROGRAM EXAMPLE: Select one of the supported GPIB plotters, set its address at 22 and connect the plotter via IEEE to the controller . Create a screen picture on the DSO that you want to plot and run the following program.
3 - 68 USING THE COMBISCOPE INSTRU MENTS 3.13 Real-Time Clock The real-time clock keeps tra ck of the current date and tim e. The date and time are stamped on acquired wave forms to be sent to a computer or to be output to a hardcopy devi ce. The time of stamping is also the ti me of the acquisition trigger .
USING THE COMBISCOPE INSTRUMENTS 3 - 69 PROGRAM EXAMPLE: ’ ***** ’Calibrate the instr ument and print the calibration r esult. ’ ***** CALL Send (0, 8, " * C AL?", 1) ’ Starts the ca.
3 - 70 USING THE COMBISCOPE INSTRU MENTS 3.15 Status Reporting Status reporting is done via the status reporting system, which is completely described in chapte r 5 "THE ST A T US REPORTING SYSTEM" of the SCPI Users Handbook.
USING THE COMBISCOPE INSTRUMENTS 3 - 71 3.15.1.1 Op eration status data BIT : MEAN ING: 0 CALibrating This bit is set during the time that the instr ument is performin g a calibratio n. 2 RANGing This bit is set during the time that the instru ment is autoranging (autosetting).
3 - 72 USING THE COMBISCOPE INSTRU MENTS 3.15.1.2 Questionable status data BIT : MEAN ING: 0 VOL T age This bit is set if a digital sample value is clipped at the maximum or minimum value while a FETCh? query is do ne on the sample array .
USING THE COMBISCOPE INSTRUMENTS 3 - 73 3.15.2 How to reset the status data The * CLS command allows yo u to clear the following status data structures: • All event status registers, such as the fol.
3 - 74 USING THE COMBISCOPE INSTRU MENTS 3.15.3 How to enable status reporting The principle of us ing the status reporting mechanism is explained by showing two program examples. In th e first example the standard Status Byte (STB) is checked to signal "operation completed".
USING THE COMBISCOPE INSTRUMENTS 3 - 75 3.15.3.2 Program example using a servi ce req uest (SRQ) PROGRAM EXAMPLE: In this example the "Service Request" mechani sm is used to detect wh ether or not a "CONFigure:AC" + "INIT iate" operation is complet ed.
3 - 76 USING THE COMBISCOPE INSTRU MENTS 3.15.4 How to report errors Instrument errors usually caused by pro gramming or setting errors, can be reported by the in strument during the exe cution of each comman d. T o make sure that a program is runni ng properly , you should query the instrument for possibl e errors after every functio nal command.
USING THE COMBISCOPE INSTRUMENTS 3 - 77 3.15.4.2 Er r or - re p or tin g usin g th e SRQ me ch an ism Program an error-reportin g routine and use the "Service Request (SRQ) Generation" mech anism to interrupt the execution of the program to exec ute the error-reporting r outine.
3 - 78 USING THE COMBISCOPE INSTRU MENTS 3.16 Saving/Restoring Instrument Setups This level of programm ing involves all functions in the CombiScopes instru ments, i.e., complete instrument setups are proce ssed. This allows you to program one or more functions that are not ind ividually programmab le.
USING THE COMBISCOPE INSTRUMENTS 3 - 79 3.17 Front Panel Simulation The use of "front panel simulatio n" commands must be restricted to specia l applications or fro nt panel functions that are not supported by SCPI commands.
3 - 80 USING THE COMBISCOPE INSTRU MENTS PROGRAM EXAMPLE: CALL Send(0, 8, " * RS T", 1) ’ Resets the instrumen t CALL Send(0, 8, "SYS Tem:KEY 104", 1) ’ Enables the UTILITY sof.
USING THE COMBISCOPE INSTRUMENTS 3 - 81 3.18 Functions not Directly Programmable Not all front p anel functions are individu ally programmable with SCPI co mmands. However , the SYST em:SET and * SA V/ * RCL commands can be used to access the following functions: - Cursor functions see CURSORS menu (appendix B.
COMMAND REFERENCE 4 - 1 4 COMMAND REFERENCE In the first section the no tation conventions concer ning the specification of the syntax and data types are given. In the second section a summary of all comma nds and associate paramete rs is given in alphabeti cal order .
4 - 2 COMMAND REFERENCE Notes: (1) A message that is specified as a sequency of literals ca n be sent to the instrument in any upper or low er case combination. The case of the characters has no se mantical meaning. (2) Upper and lower case characters in a syntax specifica tion are used to distinguish between the short and long for m of a mnemonic.
COMMAND REFERENCE 4 - 3 Notes: (1) A space character th at needs to be part of a message is specified as SP . Spaces within a synta x specification that are not specified as SP are used for formatting purposes to improve the r eadability; they don’t have a ny semantical meaning.
4 - 4 COMMAND REFERENCE <integer> = <digit> {<digit>} Integer notation that specifi es a number . <numeric_data> = <NRf> | <hexadecimal_data> | <octal_data> | <binary_data> Any decimal or non-deci mal n umeric data type.
COMMAND REFERENCE 4 - 5 4.2 Command Summary The following list i s a summary of all command s and parameters in al phabetical order , beginning with the common command s. The corresponding queries of the commands are not l isted. If a command has no query , this is reported in the column NOTES as "no quer y".
4 - 6 COMMAND REFERENCE COMMAND: P ARAMETERS: NOTES: ABORt no query CALCulate<n> <n> =[1] | 2 :DERivative alias = :DIFFerential :POINT s <numeric_data> | MAX | MIN range = 3, 5, .., 129 : S TATe <Boolean> :FEED "<trace_name>" <trace_name> = CHn | Mi_n n = 1 .
COMMAND REFERENCE 4 - 7 COMMAND: P ARAMETERS: NOTES: DISPlay :BRIGhtness <NRf> | MAXimum | MINimum <NRf> = 0.00 .. 1.00 :MENU [:NAME] TBMode | TRIGger | DMODe | SETups | CURSors | ACQuire .
4 - 8 COMMAND REFERENCE COMMAND: P ARAMETERS: NOTES: INPut<n> <n> = [1] | 2 | 3 | 4 :COUPling AC | DC | GROund :FIL T e r [:LP ASs] [:ST A T e] <Boolean> :FREQuency? query only respo.
COMMAND REFERENCE 4 - 9 COMMAND: P ARAMETERS: NOTES: SENSe :A VERage [:ST A T e] <Boolean> :COUNt <NRf> | MAXimum | MINimum <NRf> = 2, 4, .., 4096 :TYPE? response = SCAL :FUNCtion [:ON] "XTIMe:VOL T a ge<...>" no query :OFF "XTIMe:VOL T a ge<.
4 - 10 COMMAND REFERENCE COMMAND: P ARAMETERS: NOTES: SYST em :BEEPer : S TATe <Boolean> :COMMunicate :SERial :CONT rol :DTR ON | ST ANdard :RTS ON | ST ANdard [:RECeive] | TRANsmit :BAUD <nu.
COMMAND REFERENCE 4 - 11 COMMAND: P ARAMETERS: NOTES: TRIGger [:SEQuence[1] | ST ARt] :FIL T er :HP ASs :FREQuency 3E4 30 KHz = HF-reject : S TATe <Boolean> :LP ASs :FREQuency 0 | 10 | 3E4 0 = D.
4 - 12 COMMAND REFERENCE Note 1: <voltage_parameters> = [<expected_voltage > [,<resolution>]] Note 2: <measure_function > <measure_parameters> :AC :AMPLitude [:DC] :F AL .
COMMAND REFERENCE 4 - 13 4.3 Command Descriptions The description of corresponding comma nds and quer ies is combined. Ea ch command/query description starts on a new page. A description co nsists of the following parts: COMMAND HEADER Syntax: Specifies the syntax of a command or query (h eader + parameters) to be placed on the GPIB.
4 - 14 COMMAND REFERENCE Errors: Specifies possible error numbers plus their m eaning. The error number , plus the corresponding text can be requested by sending the SYST em:ERROR? or ST A Tus:QUEue? query . Front panel compliance: Specifies the compliance with fr ont panel operations.
COMMAND REFERENCE 4 - 15 * CAL? CALibration Syntax: * CAL? Response: 0 | 1 0 Calibration okay . 1 Calibration not okay . Description: This query performs an automatic internal self-calibrati on and reports the result of that calibration. No external means or operator interface is needed.
4 - 16 COMMAND REFERENCE * CLS Clear Status Syntax: * CLS Description: The * CLS command clears the following status data stru ctures: 1. Clears all Event Status Registers, such as the followi ng: - S.
COMMAND REFERENCE 4 - 17 * ESE Event Status Enable Syntax: * ESE <numeric_data> Query form: * ESE? Response: <integer> Description: The command sets and the query reports the contents of the standard Event Status Enable register (ESE). The range of the 8-bit ESE contents is b etween 0 and 255 decimal.
4 - 18 COMMAND REFERENCE * ESR? Event Status Register Syntax: * ESR? Response: <integer> Description: The * ESR? query reports the contents of the stan dard Event Status Registe r (ESR) and clears it. The range of the 8-bit ESR contents is be tween 0 and 255 decimal.
COMMAND REFERENCE 4 - 19 * IDN? Identification Syntax: * IDN? Response: <manufacturer>,< model>,<serial_number>,<sw_le vel> <manufacturer> E.
4 - 20 COMMAND REFERENCE * OPC Operation Complete Syntax: * OPC Query form: * OPC? Response: 1 Description: The * OPC command causes the in strument to set the ope ration complete bit (OPC) in the standard Event Status Register (ESR), when all pendin g operations have been finished.
COMMAND REFERENCE 4 - 21 * OPT? Option identification Syntax: * OPT? Response: <option> {,<option>} <option> <name>:<serial_nr>:<sw_level> <name> IEEE | EXT | EM | MP <serial_nr> Serial number is always 0.
4 - 22 COMMAND REFERENCE * RCL Recall instrument setup Syntax: * RCL <numeric_data> Description: The * RCL command restores instrument settings from one of the internal memory registers 0 .. 10. The settings in me mory register 0 are standa rd settings, which can only be recalled.
COMMAND REFERENCE 4 - 23 * RST Reset Syntax: * RST Description: The * RST command resets the instrument. The hardware and software of the instrument is initi alized without affecting any of the IEEE interface conditi ons. The instrument turns into a fixed setup, which is op timized for remote operatio n.
4 - 24 COMMAND REFERENCE • Cancels or aborts any instrument-d ep endent action. • Cancels the ef fect of the * OPC command and the * OPC? query . • Sets the TRIGger subsystem into its IDLE state. The * RST command does not af fect the followi ng: • State of the IEEE 488.
COMMAND REFERENCE 4 - 25 * SA V Save instrument setup Syntax: * SA V <numeric_data> Description: The * SA V command saves the current instrum ent settings into one of the internal memory registers 1 .. 10. The settings in memory registe r 0 are standard settings, which can only be recalled.
4 - 26 COMMAND REFERENCE * SRE Service Request Enable Syntax: * SRE <numeric_da ta > Query form: * SRE? Response: <integer> Description: The command sets and the que ry reports the contents of the Service Request Enable (SRE) register . The range of the 8-bit ES R contents is between 0 and 255 decimal.
COMMAND REFERENCE 4 - 27 * STB? Status Byte Syntax: * STB? Response: <integer> Description: The * STB? query reports the contents of the Status Byte register (STB). The range of the 8-bit STB contents is between 0 and 255 decimal. The Status Byte Register contains the summary status of all overlaying status registers and queues.
4 - 28 COMMAND REFERENCE * TRG T rigger Syntax: * TRG Description: The * TRG command triggers the instrument by ge nerating a Group Execut e T rigger ( GET ) code. Example: Send → *RST Resets the instrument. Send → TRIGger:SOUR ce BUS GPIB becomes trigger sour ce .
COMMAND REFERENCE 4 - 29 * TST? Self-test Syntax: * TST? Response: 0 | 1 0 Self-test okay . 1 Self-test not okay . Description: The * TST? query initiates a RAM/ROM test in the instrument and returns the result of the test. The result of the RAM/ROM test is 0, if the te st is completed without detecting any err or .
4 - 30 COMMAND REFERENCE * W AI W ait-to-continue Syntax: * WA I Description: The * WAI comm and prevents the instr ument to execute any fur ther command until all previous commands and queri es have been completed. The * WA I command is used to force seq uential execution of commands b y the instrument.
COMMAND REFERENCE 4 - 31 ABORt Syntax: ABORt Description: The ABORt command resets the trigger system and places it in the "IDLE" state. Pending actions that were alre ady started are fi nished immediately . The ABORt command is not finished unti l the pendin g actions have been terminated.
4 - 32 COMMAND REFERENCE CALCulate<n>:DERivative:POINts CALCulate<n>:DERivative:ST A T e Syntax: CALCulate<n>:DERivative:POIN ts <numeric_data> | MAXimum | MINimum CALCulate<n>:DERivative:ST A T e <Boolean> <n> [1] | 2 <numeric_data> 3, 5, 7, .
COMMAND REFERENCE 4 - 33 CALCulate<n>:FEED Syntax: CALCulate<n>:FEED "<trace_name>" Note: The parameter "<trace_name>" is <string_d ata>. Therefore, it may be spec ified between si ngle quotes as well, i.
4 - 34 COMMAND REFERENCE CALCulate<n>:FIL T er[:GA TE]:FREQuency:POINts CALCulate<n>:FIL T er[:GA TE]:FREQuency:ST A T e Syntax: CALCulate<n>:FIL T er[:GA TE]:FREQuency:POINts <nu.
COMMAND REFERENCE 4 - 35 CALCulate<n>:INT egral:ST A T e Syntax: CALCulate<n>:INT egral:ST A T e <Boolean> <n> [1] | 2 Query form: CALCulate<n>:INT egral:ST A T e? Response: 0 | 1 0 Integrate function turned of f. 1 Integrate function turned on .
4 - 36 COMMAND REFERENCE CALCulate<n>:MA TH[:EXPRession] Syntax: CALCulate<n>:MA TH[:EXPRession] ( <trace_name> <operation> <trace_name> ) <n> [1] | 2 <trace_name> A trace name which is a predefined <acquisition_tr ace> or <memory_trace>.
COMMAND REFERENCE 4 - 37 CALCulate<n>:MA TH:ST A T e Syntax: CALCulate<n>:MA TH:ST A T e <Boolean> <n> [1] | 2 Query form: CALCulate<n>:MA TH:ST A T e? Response: 0 | 1 0 Mathematics functio n turned of f. 1 Mathematics functio n turned on.
4 - 38 COMMAND REFERENCE CALCulate<n>:TRANsform:FREQuency:ST A T e CALCulate<n>:TRANsform:FREQuency:TYPE CALCulate<n>:TRANsform:FREQuency:WINDow Syntax: CALCulate<n>:TRANsform:.
COMMAND REFERENCE 4 - 39 Example: Send → CALCulate2:T RANsform:FREQuency:TYPE RELat ive Selects relative MA TH2-FF T calculation. Send → CALCulate2:T RAN sform:FREQuency:WINDow HANNin g Selects MA TH2-FF T-HANNing window . Send → CALCulate2:T RAN sform:FREQuency:STATe ON Switches MA TH2-FF T on.
4 - 40 COMMAND REFERENCE CALCulate<n>:TRANsform:HIST ogram:ST A T e Syntax: CALCulate<n>:TRANsform:HIST ogram:ST A T e <Boolean> <n> [1] | 2 Query form: CALCulate<n>:TRANsform:HIST ogram:ST A T e? Response: 0 | 1 0 Histogram function turned of f.
COMMAND REFERENCE 4 - 41 CALibration[:ALL] Syntax: CALibration[:ALL] Query form: CALibration[:ALL]? Response: 0 | 1 Description: The CALibration command performs an automatic in ternal self-calibration. No external means or operator inter face is ne ede d.
4 - 42 COMMAND REFERENCE Example: Send → * RST Resets the instr ume nt. Send → CALibration Starts auto calibration. Send → STATus:OPERa tio n:CO NDition? Requests for oper . conditions. Read ← <cond_reg> Re ads condition register . WHILE (bit 0 of <cond_reg) = 1) Loops while ca libration busy .
COMMAND REFERENCE 4 - 43 CONFigure Syntax: CONFigure[:VOL T age]<measure_function> [[ (<voltage_parameter s>),] <measure_paramete rs>] [,<channel_list>] The syntax elements are specified with th e MEASure? query . Description: The CONFigure command i s part of the measur ement instruction set.
4 - 44 COMMAND REFERENCE Example 1: Send → CONFigure:VOLTage:AC 0 .6,(@ 2) Configures AC-RMS channel 2, expected voltage 600 mV . Send → INPut2:COUPl ing A C Channel 2 AC coupled. Send → READ:AC? (@2) Initiates + fetches AC-RMS value. Read ← <first measu red AC-RMS valu e> Send → READ:AC? (@2) Initiates + fetches AC-RMS value.
COMMAND REFERENCE 4 - 45 DISPlay:BRIGhtness Syntax: DISPlay:BRIGhtness <Numeric_data> | MINimum | MAXim um <Numeric_data> 0.0 .. 1.0 MINimum Equals 0.0 Trace display is fully blanked. MAXimum Equals 1.0 T race display has fu ll intensity .
4 - 46 COMMAND REFERENCE DISPlay:MENU[:NAME] Syntax: DISPlay:MENU[:NAME] <character_d ata> Description: The DISPlay:MENU command can be used to select a softkey menu by specifying a prede fined name. Additio nally , the display of the softkey me nu field is switched ON.
COMMAND REFERENCE 4 - 47 DISPlay:MENU:ST A T e Syntax: DISPlay:MENU:ST A T e <Boolean> Query form: DISPlay:MENU:ST A T e? Response: 0 | 1 0 Display turned of f. 1 Display turned on. Description: Switches the display of the softkey menu field o n or off.
4 - 48 COMMAND REFERENCE DISPlay:WINDow[1]:TEXT<n>:DA T A? Syntax: DISPlay:WINDow[1]:TEXT<n>:DA T A? [1] Indicates th at the measurement result fie ld is win dow 1. <n> 1 | 2 | 10 | 1 1 | 12 | 13 | 20 | 21 | 30 | 40 | 51 | 52 | 60 | 61 1 MEAS1 result is returned.
COMMAND REFERENCE 4 - 49 The measurement data func tions must be enabled first, or the error messa ge -221 "Settings conflict" is generated. If the oscilloscope is in the analog mode, the error message -221 "Settings con flict;Digital mode required" is gene rated.
4 - 50 COMMAND REFERENCE DISPlay:WINDow2:TEXT[1]:CLEar Syntax: DISPlay:WINDow2:TEXT[1]:CLEar 2 Indicates that the user text field is window 2. [1] Is optional and ha s no meaning. Description: This command clears the conten ts of the user text fie ld from the screen of the oscilloscope.
COMMAND REFERENCE 4 - 51 DISPlay:WINDow2:TEXT[1]:DA T A Syntax: DISPlay:WINDow2:TEXT[1]:DA T A <string_data> | <block_data> 2 Indicates that the user text field is window 2. <string_data> Maximum 64 characters. Examples: "this is a string" ’this also’ <block_data> Maximum 64 data byt es.
4 - 52 COMMAND REFERENCE T able 4.1 Display character set for CombiScope instru ments Notes: - The left value (dec) is the decimal value of the code and the right value (sym) is the oscilloscope symbol. - The displayed symbol for the decimal values 12 8 to 255 is equal to the symbol display for the decimal values 0 to 127.
COMMAND REFERENCE 4 - 53 DISPlay:WINDow2:TEXT[1]:ST A T e Syntax: DISPlay:WINDow2:TEXT[1]:ST A T e <Boolean> 2 Indicates that the user text field is window 2. Query form: DISPlay:WINDow2:TEXT[1]:ST A T e? Response: 0 | 1 0 Display turned of f. 1 Display turned on.
4 - 54 COMMAND REFERENCE FETCh? Syntax: FETCh[:VOL T age]<measure_function>? [[ (<voltage_parameters>),] <measure_parameter s>] [,<channel_list> | <trace_list>] <trace.
COMMAND REFERENCE 4 - 55 Description: The FETCh? queries are part of th e measurement instruction set. They return the signal characteristic from the last initiated measurement, a s specified by the <measure function> part of the query h eader .
4 - 56 COMMAND REFERENCE Example 1: Send → MEASure:VOL T age:AC? 0.6,(@2) Measures AC- RMS on channel 2, expected voltage 600 mV . Read ← <the measure d AC-RMS value> Send → FETCh:DC? (@ 2) Fetches the DC component. Read ← <the measured DC component> Send → FETCh:AMPLit ude? (@2) Fetches the waveform amplitude.
COMMAND REFERENCE 4 - 57 FORMat[:DA T A] Syntax: FORMat[:DA T A] INT eger[, 8 | 16] INT eger ,8 T race point of 8 bits (one byte). INT eger ,16 T r ace point of 16 bits (two bytes). Query form: FORMat[:DA T A]? Response: INT ,8 | INT ,16 INT ,8 Trace point consists of one byte.
4 - 58 COMMAND REFERENCE HCOPy:DA T A? Syntax: HCOPy:DA T A? Response: <indefinite_block> Description: This query returns a data block of indefinite length containing a hard copy of the picture on the oscilloscope display , according to the current printer/plot ter selections.
COMMAND REFERENCE 4 - 59 HCOPy:DEV ice Syntax: HCOPy:DEVice HPGL | HP7440 | HP75 50 | HP7475A| HP7470A | PM8277 | PM8278 | FX80 | LQ1500 | HP2225 | HPLASER | HP540 | DUMP_M1 HPGL HPGL plot data form at. HP7440, HP7550, HP7475A, HP7470A, Pl otte rs. PM8277, PM8278 FX80, HP2225, LQ1500, HPLASER, HP540 Printers.
4 - 60 COMMAND REFERENCE INITiate:CONT inuous Syntax: INIT iate:CONT inuous <Boolean> Query form: INIT iate:CONT inuous? Response: 1 | 0 1 Continuous automatic initi ation is ON. 0 Continuous automatic initi ation is OFF . Description: The INIT iate:CONTinuous command selects whether the trigger system is continuously initiated or not.
COMMAND REFERENCE 4 - 61 INITiate[:IMMediate] Syntax: INIT iate[:IMMediate] Description: This command causes the trigger system to be initiated once only , i.e., initiates one acquisition cycle. The actual acquisition starts when all trigger conditions have been met.
4 - 62 COMMAND REFERENCE INPut<n>:COUPling Syntax: INPut<n>:COUPling AC | DC | GROund <n> [1] | 2 | 3 | 4 Query form: INPut<n>:COUPling? <n> [1] | 2 | 3 | 4 Response: AC | DC | GRO Description: Selects the vertical input coupling of a specified <n> inp ut channel.
COMMAND REFERENCE 4 - 63 INPut<n>:FIL T er[:LP ASs][:ST A T e] INPut<n>:FIL T er[:LP ASs]:FREQuency? Syntax: INPut<n>:FIL T er[:LP ASs][:ST A T e] <Boolean> <n> [1] | 2 |.
4 - 64 COMMAND REFERENCE INPut<n>:IMPedance Syntax: INPut<n>:IMPedance <NRf> | MINimum | MAXimum <n> [1] | 2 | 3 | 4 <NRf> 50 | 1E6 <MINimum> Equals 5.00E+01 (50 Ω ) <MAXimum> Equals 1.00E+06 (1 M Ω ) Note: Channel 3 is not applicable for PM33x0B.
COMMAND REFERENCE 4 - 65 INPut<n>:POLarity Syntax: INPut<n>:POLarity NORMal | INV erted <n> 2 | 4 Note: Input 4 is not applicable for PM33x0B.
4 - 66 COMMAND REFERENCE INST rument:NSELect INST rument[:SELect] Syntax: INST rument:NSELect <NRf> | MINimum | MAXimum INST rument [:SELect] DIGital | ANALog <NRf> 1 | 2 1 | MINimum The digital mode (ANALOG key) is activa ted. 2 | MAXimum The analog mode is activated.
COMMAND REFERENCE 4 - 67 MEASure? Syntax: MEASure[:VOL T age]<measure_function>? [[ (<voltage_parameter s>),] <measure_paramete rs>] [,<channel_list>] <voltage_parameters>.
4 - 68 COMMAND REFERENCE :F AL L:OVERshoot No parameters. Measures the ove rshoot of the first falling edge of a waveform, expressed as a percenta ge of the waveform AMPLitude. The fall overshoo t is the diff erence between the LOW value and th e MINimum negative peak value to wh ich the signal initially falls, as shown in figure 3.
COMMAND REFERENCE 4 - 69 :MINimum No parameters. Measures the MINimum instanta neous voltage value of the waveform. The unit of MINimum is volt. :NDUT ycycle <reference_middle> Measures the negative duty cycle.
4 - 70 COMMAND REFERENCE :TMINimum No parameters. Measu res the time of the first occurrence of the MINimum voltage of the input signal . The unit of TMINimum is seconds. :RISE:OVERshoo t No parameters. Measure s the oversho ot of the first risi ng edge of a waveform, expressed as a percenta ge of the waveform AMPLitude.
COMMAND REFERENCE 4 - 71 <expected_time> = <NRf> | DEFault Specifies the time value th at is expected to be measured. The unit of <expected_time> is second. <time_resolution> = <NRf> | DEFault Specifies the resolution o f the time measureme nt to be executed.
4 - 72 COMMAND REFERENCE Limitations: The oscilloscope is on ly able to calculate rise a nd fall time characteristi cs, if the <low_reference> and <high_reference> parame ters are limited to 1/8 divisio n from their maximum and m inimum. The limit of 0.
COMMAND REFERENCE 4 - 73 Description: The MEASure? queries are par t of the measurement instruction set. They provide an automatic measurement of the sign al characteristics as specified by the <measure_function> par t in the query hea der .
4 - 74 COMMAND REFERENCE READ? Syntax: READ[:VOL T age]<measure_function>? [[ (<voltage_parameter s>),] <me asure_parameters>] [,<channel_list>] The syntax elements are specified with th e MEASure? query . Response: <NR3> Example: <1.
COMMAND REFERENCE 4 - 75 Note: Because the READ? query lea ves instru ment se ttings unaffected, it can very well be used a s follows to read a mea sured value within a curso r limited acquisition area: - Press the CURSORS key on the front panel to enable the use of cursors.
4 - 76 COMMAND REFERENCE SENSe:A VERage[:ST A T e] Syntax: SENSe:A VERage[:ST A T e] <Boolean> Query form: SENSe:A V ERage[:ST A T e]? Response: 0 | 1 0 A VERAGE function switched off. 1 A VERAGE function switched on. Description: Switches the prepr ocessing A VERAGE function on or of f.
COMMAND REFERENCE 4 - 77 SENSe:A VERage:COUNt SENSe:A VERage:TYPE? Syntax: SENSe:A VERage:COUNt <NRf> <NRf> 2 | 4 | 8 | 16 | ... | 2048 | 4096 SENSe:A V ERage:TYPE? Response: SCAL Query form: SENSe:A VERage:COUNt? [MINinum | MAXimum] Response: 2 | 4 | 8 | 16 | .
4 - 78 COMMAND REFERENCE SENSe:FUNCtion:OFF SENSe:FUNCtion[:ON] SENSe:FUNCtion:ST A T e? Syntax: SENSe:FUNCtion:OFF "XTIMe:VOL T age<n>" SENSe:FUNCtion:OFF "XTIMe:VOL T age:SUM &l.
COMMAND REFERENCE 4 - 79 The parameters "XTIMe:VOL T age<n>" and "XTIMe:VOL T age:SUM <i,j>" are of the type <string_data> (specified betwe en double or single quotes).
4 - 80 COMMAND REFERENCE SENSe:SWEep:OFFSet:TIME Syntax: SENSe:SWEep:OFFSet:TIME <NRf> | M INimum | MAXi mum <NRf> The trigger delay time in seconds. A negative value causes a pre-trigg er view time, whereas a positi ve value causes a post-trigger del ay time.
COMMAND REFERENCE 4 - 81 SENSe:SWEep:PDET ection[:ST A T e] Syntax: SENSe:SWEep:PDET ection[:ST A T e] <Boolean> Query form: SENSe:SWEep:PDET ection[:ST A T e]? Response: 0 | 1 0 Peak detection switched off. 1 Peak detection switched on. Description: Switches peak detection on or of f.
4 - 82 COMMAND REFERENCE SENSe:SWEep:REAL time[:ST A T e] Syntax: SENSe:SWEep:REALtime[:ST A T e] <Boolean> Query form: SENSe:SWEep:REALtime[:ST A T e]? Response: 0 | 1 0 Real-time mode switched of f. 1 Real-time mod e switched on. Description: Switches the ’real- time’ m ode of the acquisition on or of f.
COMMAND REFERENCE 4 - 83 SENSe:SWEep:TIME Syntax: SENSe:SWEep:TIME <NRf> | MINimum | M AXimum <NRf> The sweep time in seconds. MINimum Selects the min imum possible swee p time.
4 - 84 COMMAND REFERENCE Limitations: • The MTB value of 2 ns is only possible for th e PM339xB CombiScope instruments. • If SENSe:SWEep:REALtime is ON, the MTB range is from 200 s econds to 250 nanoseconds, a nd sequential sampling is not gua ran teed.
COMMAND REFERENCE 4 - 85 SENSe:SWEep:TIME:AUTO Syntax: SENSe:SWEep:TIME:AUTO <Boolean> Query form: SENSe:SWEep:TIME:A UT O? Response: 0 | 1 0 Autoranging MTB switched of f. 1 Autoranging MTB switched on. Description: Switches the autoranging function of the Main T ime Base (MTB) on or of f.
4 - 86 COMMAND REFERENCE SENSe:VOL T age<n>[:DC]:RANGe:AUTO Syntax: SENSe:VOL T age<n>[:DC]:RANG e:AUT O <Boolean> <n> [1] | 2 | 3 | 4 Note: Channel 3 and 4 not ap plicable for PM3 3x0B. Query form: SENSe:VOL T age<n>[:DC]:RANG e:AUT O? Response: 0 | 1 0 Autoranging attenuator chan nel <n> switch ed off.
COMMAND REFERENCE 4 - 87 SENSe:VOL T age<n>[:DC]:RANGe:OFFSet Syntax: SENSe:VOL T age<n>[:DC]:RANGe:OFFSet <NRf> | MINimum | MAXimum <n> [1] | 2 | 3 | 4 Note: Channel 3 and 4 not applicab le for PM33x0B. <NRf> The vertical of fset for channel <n> in volts.
4 - 88 COMMAND REFERENCE SENSe:VOL T age<n>[:DC]:RANGe:PTPeak Syntax: SENSe:VOL T age<n>[:DC]:RANGe:PTPeak <NRf> | MINimum | MAXimum <n> [1] | 2 | 3 | 4 Note: Channel 3 not applicable for PM3 3x0B. <NRf> The vertical sensitivity for channel <n> in peak-to- peak volts, expressed in full scale (8 divisions).
COMMAND REFERENCE 4 - 89 After a * RST command, the peak-to-peak value is reset as follows: - For channel 1 to 1.6V : vertical sensi t ivity = 200 mV/div . - For channel 2 to 0.4V : vertical sensi t ivity = 50 mV/d iv . - For channel 3 and 4 to 8V : vertical sensitivi ty = 1 V/div .
4 - 90 COMMAND REFERENCE ST A T us:OPERation:CONDition? ST A T us:OPERation:ENABle ST A T us:OPERation[:EVENt]? ST A T us:OPERation:NTRansition ST A T us:OPERation:PTRansition Syntax: ST A Tus:OPERati.
COMMAND REFERENCE 4 - 91 The ST A T us:OPERation:PTRansition comman d sets the contents of the positive transition filter of the opera tion register stru cture.
4 - 92 COMMAND REFERENCE ST A T us:PRESet Syntax: ST A Tus:PRESet Description: The PRESet command is used to se t the status data structure in such a way , that device-dependen t events are reported at a hi gher level through the mandato ry part of the status reporting mechanism.
COMMAND REFERENCE 4 - 93 ST A T us:QUEStionable:CONDition? ST A T us:QUEStion able:ENABle ST A T us:QUEStion able[:EVENt]? ST A T us:QUEStion able:NTRansition ST A T us:QUEStion able:PTRansition Synta.
4 - 94 COMMAND REFERENCE The ST A T us:QUEStionable:P TRansition command sets the contents of the positive transition filter of the questionab le register structure.
COMMAND REFERENCE 4 - 95 ST A T us:QUEue[:NEXT]? Syntax: ST A Tus:QUEue[:NEXT]? Response: <error_number>,"<e rror_description>" <error_number> A predefined number . If 0 (zero) is returned, there are no error s in th e queue.
4 - 96 COMMAND REFERENCE SYST em:BEEPer SYST em:BEEPer:ST A T e Syntax: SYST em:BEEPer SYST em:BEEPer:ST A T e <Boolean> Query form: SYST em:BEEPer:ST A T e? Response: 0 | 1 0 Beeper disabl ed.
COMMAND REFERENCE 4 - 97 SYST em:COMMunicate:SERial:CONT rol:DTR SYST em:COMMunicate:SERial:CONT rol:RTS Syntax: SYST em:COMMunicate:SERial:CONTrol:DTR ON | ST ANdard SYST em:COMMunicate:SERial:CONTrol:R TS ON | ST ANdard ON Selects the "3 wire" option.
4 - 98 COMMAND REFERENCE SYST em:COMMunicate:SERial[:RECeive]:BAUD SYST em:COMMunicate:SERial:TRANsmit:BAUD SYST em:COMMunicate:SERial[:RECeive]:BITS SYST em:COMMunicate:SERial:TRANsmit:BITS SYST em:C.
COMMAND REFERENCE 4 - 99 Query form: SYST em:COMMunicate:SERial[:RECeive]:P ACE? SYST em:CO MMunicate:SERial:TRANsmit:P ACE? Response: XON | NONE XON X-on/X-of f handshake enabled.
4 - 100 COMMAND REFERENCE SYST em:DA TE Syntax : SYST em:DA TE <year>,<month>,<day> <year> <NRf> | MINimum | MAXimum Range from 1992 to 2091. <month> <NRf> | MINimum | MAXimum Range from 1 to 12. <day> <NRf> | MINimum | MAXimum Range from 1 to 31.
COMMAND REFERENCE 4 - 101 SYST em:ERRor? Syntax: SYST em:E RRor? Response: <error_number>,"<e rror_description>" <error_number> A predefined number . If 0 (zero) is returned, there are no error s in th e queue. <error_description> A short description of the error .
4 - 102 COMMAND REFERENCE SYST em:KEY Syntax: SYST em:KEY <NRf> | MINimum | MAXimum <NRf> Reference number to a key: 1, 2, 3, 4, 5, 6: softkey-1 (top ) to softkey-6 (bottom ) 101, 102, 103, etc.: top row of keys (left to right) •• • • •• • • 801, 802, 803, etc.
COMMAND REFERENCE 4 - 103 T able 4.3 Reference number for front pa ne l keys Notes: • Simulation of pressing the CAL key (102) is not useful, because calibration is only done when pre ssed for 2 seconds. • Simulation of pressing the HAR D COPY key (1 13) is only useful, when the RS-232-C interface is selected as output conn ection .
4 - 104 COMMAND REFERENCE Example 1: Send → SYSTem:KEY 1 01 Simulates the pressing of AUT OSET . Send → SYSTem:KEY? Read ← 101 Returns the last key simulation. Example 2: Send → *RST Resets the instrument. Send → DISPlay:MENU UTIL Enables UTILITY softkey menu.
COMMAND REFERENCE 4 - 105 SYST em:SET Syntax: SYST em:S ET <indefinite_block> Query form: SYST em:SET? [<node_nr> | MINimum | MAXimum] <node_nr> A number specifying which node settings. The following nodes are su pp orted: 0 End node indicator .
4 - 106 COMMAND REFERENCE Limitations: For the PM33x0B CombiScope instruments: - Input channel 3 (CH3) is not applicable. - Input channel 4 (CH4) is limited to external trigger view . Example: Send → SYSTem:SET? 32 Queries for cursor instrument settings.
COMMAND REFERENCE 4 - 107 SYST em:TIME Syntax: SYST em:TIME <hour>,<minute >,<second> <hour> <NRf> | MINimum | MAXimum Range from 0 to 23. <minute> <NRf> | MINimum | MAXim um Range from 0 to 59. <second> <NRf> | MINimum | MAXimum Range from 0 to 59.
4 - 108 COMMAND REFERENCE SYST em:VERSion? Syntax: SYST em:VERSion? Response: YYYY .V YYYY The year number of the SCPI version. V The approved revision numbe r within the year . Description: Reports the version of the SCPI command set to which your instrument complies.
COMMAND REFERENCE 4 - 109 TRACe:COPY Syntax: TRACe:COPY <destination_tr ace>,<source_trace> Alias: DA T A:COPY <destination_trace>,<sou rce_trace> <source_trace> CHn | Mi_n <destination_trace> Mi_n n = 1 .. 4 i = 1 .
4 - 110 COMMAND REFERENCE TRACe[:DA T A] Syntax: TRACe[:DA T A] <destination_trace> , <NRf> | <definite_block> Alias: DA T A[:DA T A] <destination_trace> , <NRf> | <definite_block> <destination_trace> Mi_n n = 1 .
COMMAND REFERENCE 4 - 111 Description: The TRACe? query reads a bin ary trace block from channel a cquisition memo ry (CH1 to CH4) or from reg ister memory (M1 to M8 for standard memory an d M9 to M50 for ex tended memory).
4 - 112 COMMAND REFERENCE Send → TRACe? CH1 Requests channel 1 trace. Read ← <block_data> Reads channel 1 trace. Determine nr.of .samples from <block_data >. Send → SENSe:VOLTag e:RANGe:PTPeak? Queries peak-to-peak. Read ← <peak-to-pea k> Reads pe ak-to-peak.
COMMAND REFERENCE 4 - 113 TRACe:POINts Syntax: TRACe:POINts <source_trace> [,<acquisition_length >] Alias: DA T A:POINts <source_trace> [,<acquisiti on_length>] <source_trace> CHn | Mi_n n = 1 .. 4 i = 1 .. 8 (standard memory) i = 1 .
4 - 114 COMMAND REFERENCE Description: Defines the trace length (numbe r of trace points) for all traces. The acquisition length and the le ngth of all internal traces is prog rammed to the value specified in <acquisiti on_length>. If the <acqui sition_length) parameter is omitted, the de fault value of 512 is assumed.
COMMAND REFERENCE 4 - 115 TRIGger[:SEQuence[1]]:FIL T er:HP ASs:FREQuency TRIGger[:ST ARt]:FIL T er:HP ASs:FREQuency TRIGger[:SEQuence[1]]:FIL T er:HP ASs:ST A T e TRIGger[:ST ARt]:FIL T er:HP ASs:ST .
4 - 116 COMMAND REFERENCE Description: The TRIGger:FIL T er:HP ASs:FREQuency command sets the MTB cutof f frequency always at the fixed value of 30000 Hz (all values are rounded to 30 KHz). The TRIGger:FIL T er:HP ASs:ST A T e command activates (ON) or deactivates (OFF) the MTB high-pass filte r .
COMMAND REFERENCE 4 - 117 TRIGger[:SEQuence[1]]:FIL T er:LP ASs:FREQuency TRIGger[:ST ARt]:FIL T er:LP ASs:FREQuency TRIGger[:SEQuence[1]]:FIL T er:LP ASs:ST A T e TRIGger[:ST ARt]:FIL T er:LP ASs:ST .
4 - 118 COMMAND REFERENCE Description: The TRIGger:FIL T er:LP ASs:FREQuency command sets the MTB cuto ff frequency , which defines the trig ger coupling. Th e specified frequ ency values are rounded as fo llows: - 0 .. 4.99 is rou nded to 0 Hz, i.e., DC c oupling.
COMMAND REFERENCE 4 - 119 TRIGger[:SEQuence[1]]:HOLDoff TRIGger[:ST ARt]:HOLDoff Syntax: TRIGger[:SEQuence[1]]:HOLDoff <NRf> | MINimum | MAXimum Alias: TRIGger[:ST ARt]:HOLDoff <NRf> | MINimum | MAXimum <NRf> The hold-of f value expressed in percent.
4 - 120 COMMAND REFERENCE TRIGger[:SEQuence[1]]:LEV el TRIGger[:SEQuence[1]]:LEV el:AUT O TRIGger[:ST ARt]:LEV el TRIGger[:ST ARt]:LEV el:AUTO Syntax: TRIGger[:SEQuence[1]]:LEV el <NRf> | MINimu.
COMMAND REFERENCE 4 - 121 After a * RST command, the trigger level is MAXimum and au to level peak-peak is switched off. Notice that there exi sts a coupling between progr amming the attenuator (vertical sensitivity) and the trigger level. If the attenuator is changed, the trigger level is also adapted to keep the signal display on th e screen.
4 - 122 COMMAND REFERENCE TRIGger[:SEQuence[1]]:SLOPe TRIGger[:ST ARt]:SLOPe Syntax: TRIGger[:SEQuence[1]]:SLOPe POSitive | NEGative | EITHer Alias: TRIGger[:ST A Rt]:SLOPe POSitive | NEGative | EITHer POSitive Positive trigger edge. NEGative Negative trigge r edge.
COMMAND REFERENCE 4 - 123 Example: Send → CONFigure:AC (@2) Configures AC-RMS CH2. Send → SENSe:SWEep: REALtime ON Sets real-time mode on . Send → TRIGger:SOUR ce INTe rna l2 T rigger source becomes channel 2. Send → TRIGger:LEVe l .02 T rigger level becomes 20 mV .
4 - 124 COMMAND REFERENCE TRIGger[:SEQuence[1]]:SOURce TRIGger[:ST ARt]:SOURce Syntax: TRIGger[:SEQuence[1]]:SOURce IMMediate | IN T ernal<n> | EXT ernal | LINE | BUS Alias: TRIGger[:ST ARt]:SOURce IMMediate | INT ernal<n> | EXT ernal | LINE | BUS IMMediate Immediate sweeping (no waiting for a trigger).
COMMAND REFERENCE 4 - 125 Description: Controls the trigger source. The command se lects the source, and the query returns the source tha t triggers the a cquisition. If a trigger source other than IMMediate, INT ernal<n>, LINE, or BUS is active, e xecution error -221 is generated at re ceipt of the query .
4 - 126 COMMAND REFERENCE TRIGger[:SEQuence[1]]:TYPE TRIGger[:ST ARt]:TYPE Syntax: TRIGger[:SEQuence[1]]:TYPE EDG E | VIDeo | LOGic Alias: TRIGger[:ST A Rt]:TYPE EDGE | VIDeo | LOGic | GLIT ch EDGE Selects edge triggering. VIDeo Selects TV video triggering.
COMMAND REFERENCE 4 - 127 TRIGger[:SEQuence[1]]:VIDeo:FIELd[:NUMBer] TRIGger[:ST ARt]:VIDeo:FIELd[:NUMBer] TRIGger[:SEQuence[1]]:VIDeo:FIELd:SELect TRIGger[:ST ARt]:VIDeo:FIELd:SELect Syntax: TRIGger[.
4 - 128 COMMAND REFERENCE Description: The TRIGger:VIDeo:FIELd:SELect com mand programs the video trigger mode to "field" or "lines". The TRIGger:VIDeo:FIELd[:NUMBer] command selects between "field1" and "field2".
COMMAND REFERENCE 4 - 129 TRIGger[:SEQuence[1]]:VIDeo:FORMat[:TYPE]:LPFRame TRIGger[:ST ARt]:VIDeo:FORMat[:TYPE]:LPFRame TRIGger[:SEQuence[1]]:VIDeo:FORMat[:TYPE] TRIGger[:ST ARt]:VIDeo:FORMat[:TYPE] .
4 - 130 COMMAND REFERENCE Response: 525 | 625 | 1050 | 1 125 | 1250 525 NTSC standard selected (525 lines/frame). 625 P AL (default) or SECAM standard selected ( 625 lines/frame). 1050 HDTV standard selected (1050 lines/frame) . 1 125 HDTV standard selected (1 125 lines/frame).
COMMAND REFERENCE 4 - 131 Example: Send → TRIGger:VIDe o:FORMat NTSC Selects NTSC, 525 lines/frame. Send → TRIGger:VIDeo:FORMat P AL Selects P AL, 625 lines/frame. Send → TRIGger:VIDeo:FORMat SECA M Selects SECAM, 625 lines/frame. Send → TRIGger:VIDe o:FORMat:LPFRame 1050 Selects HDTV , 1050 lines/frame.
4 - 132 COMMAND REFERENCE TRIGger[:SEQuence[1]]:VIDeo:LINE TRIGger[:ST ARt]:VIDeo:LINE TRIGger[:SEQuence[1]]:VIDeo:SSIGnal[:POLarity] TRIGger[:ST ARt]:VIDeo:SSIGnal[:POLarity] Syntax: TRIGger[:SEQuenc.
COMMAND REFERENCE 4 - 133 Description: The TRIGger:VIDeo:LINE command se lects the video line number . Dependi ng on the video system selected, the following ranges are v alid: > NTSC from 1 to 525 > P AL or SECA M fro m 1 to 62 5 > HDTV from 1 to 1250 The TRIGger:VIDeo:SSIGnal command sel e cts the video sig nal polarity .
APPLICATION PROGRAM E XAMPLES A - 1 APPENDIX A APPLICA TION PROGRAM EXAMPLES The program exampl es are written for the CombiScopes with the IEEE option installed. No other instrument is required to execute these examples. For system and programming en vironment re quirements to exe cute these exa mples, refer to section 2.
A - 2 APP LICATION PROGRAM EX AMPLES A.1 Measuring Signal Characteristics Measuring signal characteristics can be done in either of the followin g ways: 1) Using the measurement instructions. Example A.1.1 shows how to do that automatically by letting the CombiScope instrum ent select the best possible settings.
APPLICATION PROGRAM E XAMPLES A - 3 StopEOI% = 256 ’ T ermination Receive on EOI CLS ’ Clears Output Screen CALL SendIFC(0) ’ Clears the GPIB interface CALL IBTMO(0, 13) ’ Timeout at 1 0 seconds ’ ’*** Reset the instr ument and clear the status data.
A - 4 APP LICATION PROGRAM EX AMPLES A.1.2 Making programmed measurements In the following example the overshoot va lue on the rising edge of the Probe Adjust signal is measured.
APPLICATION PROGRAM E XAMPLES A - 5 A.1.3 Reading measurement values In the following example measurement values are r ead into the computer as calculated by the front pa nel MEAS1 and MEAS2 features during a single- shot measurement.
A - 6 APP LICATION PROGRAM EX AMPLES A.3 Saving/Recalling Instrument Setups The following exampl es use the save/recall features for instru ment setups. Saving and recalling ca n be done via in ternal memory (refer to A.3.1) and remotely via computer disk space (refer to A.
APPLICATION PROGRAM E XAMPLES A - 7 • Routine ServReq does the following : - Serial polls the status byte to reset the SRQ mechanism . - Reads the ESR byte to clear the OPC bit. - Sets the SRQ.detected flag to signal that an SRQ interrupt occurred. • Routine Enter .
A - 8 APP LICATION PROGRAM EX AMPLES • If an SRQ is generated (acquisition finishe d), the dT cursor value is read and printed by sending: DISPlay:WINDow:TEXT20:DA T A? Request to stop or to repeat this test (do Repeat.test1 ag ain ). • Routine ServReq does the followin g: - Serial polls the status byte to reset the SRQ mechanism .
APPLICATION PROGRAM E XAMPLES A - 9 A.4 Making a Hardcopy of the Screen In the following example a hardcopy of th e scree n picture is made as follows: 1) Enter the hard copy of the screen in HPGL data format. 2) Send the enter ed data buffer to a HPGL pl otter connected via the IEEE bus.
A - 10 APPLICATION PRO GRAM EXAMPLES A.5 Pass/Fail T esting The following exampl es use the SYST em:SET command for storing and restorin g instrument setups, which can b e used for non-supporte d functions, such as, Pass/Fail T esting.
APPLICATION PROGRAM EXAM PLES A - 11 • Routine Save.Envreg do es the following : - Requests for a memory register to read the envelope fr om, e.g. 2_1. - Requests the reference envelope by sending e.g.: TRACe? M2_1 and by reading the envelope data (en velo pe$).
A - 12 APPLICATION PRO GRAM EXAMPLES A.5.3 Running a pass/fail test In the following example the curr ent pass/fail test setup is started and monitore d. During monitoring, use is mad e of the pass/fail status bit (bit 10) in the OPERation status register to detect a failing waveform.
CROSS REFERENCES B - 1 APPENDIX B CROSS REFERENCES B.1 Cross Reference Front Panel Keys / Commands The front panel picture is cop ied from the operation guide , showing the SCPI commands correspondi ng to fr ont panel keys.
B - 2 CROSS REFERENCES.
CROSS REFERENCES B - 3 B.2 Cross Reference Softkey Menus / Commands The menu pictures are copied from or refer to men us in th e opera ti on guide . The relationship to the corr espo nding SCPI command(s) is also shown.
B - 4 CROSS REFERENCES B.2.2 CURSORS menu Programmable with the * SA V/ * RCL and SYST :SET commands. CURSORS (MEAS) (MA TH) CURSORS (MA TH) 1) CURSORS READOUT CURSORS READOUT on off on off T 1/ T T-r.
CROSS REFERENCES B - 5 B.2.3 DIS PLA Y menu Xv sY TEXT EDIT USER TEXT ST7084 ✱ RCL/ ✱ SAV SYST:SET DISP:WIND2:TEXT:DATA DISP:WIND2:TEXT:CLE DISP:WIND2:TEXT:STAT DISPLAY X-DEFL on off RETURN RETURN.
B - 6 CROSS REFERENCES B.2.4 MA THPLUS MA TH menu MA TH MA TH PLUS MA TH PLUS MA TH SCALE MA TH FIL TER P ARAM MA TH 1 MA TH 2 1 DIV= 21.3mU WINDOW 31 samples auto- scale OFFSET 26.
CROSS REFERENCES B - 7 MA TH DIF P ARAM MA TH n MA TH INTEGR P ARAM MA TH FFT P ARAM MA TH AREA WINDOW 31 samples add sub mul filter int dif fft his LIMITED yes no LIMITED yes no LIMITED yes no LEFT 80 samples RIGHT 20 samples auto- scale ch1 ch2 auto- scale OFFSET OFFSET 21.
B - 8 CROSS REFERENCES.
CROSS REFERENCES B - 9 B.2.5 MEASURE menu B.2.6 DTB (DEL ’D TB) menu Programmable with the * SA V/ * RCL and SY ST :SET commands. MEASURE MEASURE SELECT MEAS n SELECT MEAS n SELECT MEAS n MEAS2 rise.
B - 10 CROSS REFERENCES B.2.7 SA VE/RECALL menu B.2.8 SETUPS menu Programmable with the * SA V/ * RCL and SYST :SET commands. TRAC:COPY TRAC[:DATA]? RECALL ∆ SAVE m1 m2 m3 save clear CLEAR& PROT.
CROSS REFERENCES B - 11 B.2.9 TB MODE menu TB MODE EVENT DELAY ACQ LENGTH CONFIRM TB MODE RETURN RETURN TB MODE RETURN ST7088 INIT:CONT ON OFF SENS:SWE:REAL ON OFF SYST:SET ✴ RCL/ ✴ SAV TRAC:POIN .
B - 12 CROSS REFERENCES B.2.10 TRIGGER menu TRIGGER MAIN TB TRIGGER MAIN TB TRIGGER MAIN TB TRIGGER MAIN TB TRIGGER MAIN TB TRIGGER MAIN TB TRIGGER TRIGGER TRACK TRACK ANALOG TRIG:TYPE TRIG:TYPE TRIG:.
CROSS REFERENCES B - 13 TRIGGER MAIN TB TRIGGER MAIN TB VIDEO SYSTEM TRIGGER MAIN TB TRIG:VID:FORM[:TYPE] TRIG:VID:FORM:LPFR TRACK TRACK TRACK edge tv logic edge tv logic edge tv logic hdtv ntsc pal secam state pattern glitch state pattern glitch state pattern glitch 1050 1 125 1250 LINES LHxH LHxH t1 = x.
B - 14 CROSS REFERENCES B.2.1 1 UTILITY menu UTILITY UTIL UTIL PROBE UTIL RS232 SETUP UTILITY PRINT & UTIL PROBE CORR UTIL REMOTE CONTRL autoset P ARITY gnd no odd setups even ch1 ch2 ch3 ch4 1:1 .
CROSS REFERENCES B - 15 UTIL AUTOSET UTIL REMOTE CONTRL UTIL AUTOSET TRIG EDIT USER TEXT UTIL AUTOSET PROBE UTIL SCREEN & SOUND UTIL AUTOSET VERT ac dc unaffect 1M 50 Ω unaffect Ω UTIL SOUND A.
B - 16 CROSS REFERENCES B.2.12 VERTICAL menu VERTICAL MENU INP:FIL T INP1:IMP INP2:IMP INP3:IMP INP4:IMP ON OFF BW LIMIT on off 50 Ω CH1 on off 50 Ω CH2 on off 50 Ω CH3 on off 50 Ω CH4 on off S T7441 Note: - 50 Ω /1 M Ω only applicable for PM3394B.
CROSS REFERENCES B - 17 B.3 Cross Reference Functions / Commands This section describes the SCPI comman ds that are related to the oscill oscope functions and frontpanel keys. The oscilloscope functions and keys are descr ibed in chapter 5 "Function Reference" of the Operatin g Guide.
B - 18 CROSS REFERENCES FUNCTION + KEYS/MENUS RELA TED SCPI COMMAND(S) AUTOSET key AUTOSET SYST em:KEY 101 AUTOSET SEQUENCE key ST A TUS SYST em:KEY 201 key TEXT OFF SYST em:KEY 801 menu UTILITY AUTOSET or PROBE DISPlay:MENU UTIL - softkeys n = 1 .
CROSS REFERENCES B - 19 FUNCTION + KEYS/MENUS RELA TED SCPI COMMAND(S) CURSOR READOUT key CURSORS SYST em:KEY 204 menu CURSORS DISPlay:MENU CURSors READOUT DISPlay:WINDow[1]:TEXT<n>:DA T A? DELA Y SENSe:SWEep:OFFSet:TIME menu TB MODE EVENT DELA Y DISPlay:MENU TBMode - softkeys n = 1 .
B - 20 CROSS REFERENCES FUNCTION + KEYS/MENUS RELA TED SCPI COMMAND(S) FF T - F AST FOURIE R TRANSFORMA TION (MA THPLUS) key MA TH SYST em:KEY 1 1 1 menu MA TH DISPlay:MENU MA TH - softkeys n=1 .
CROSS REFERENCES B - 21 FUNCTION + KEYS/MENUS RELA TED SCPI COMMAND(S) INPUT COUPLING INPut[<n>]:COUPling AC|DC|GROund key ON (toggled ON) SENSe:FUNCtion key ON CH1 SYST em:KEY 803 key ON CH2 SY.
B - 22 CROSS REFERENCES FUNCTION + KEYS/MENUS RELA TED SCPI COMMAND(S) MA THEMA TICS CALCulate[1|2]: .... key MA TH menu MA TH DISPlay:MENU MA TH - softkeys n = 1 .. 6 SYST em:KEY n MEASURE MENU MEASure? CONFigure + READ? CONFigure + INITiate + FETCh? key MEASURE SYST em:KEY 1 10 menu MEASURE DISPlay:MENU MEASure - softkeys n = 1 .
CROSS REFERENCES B - 23 FUNCTION + KEYS/MENUS RELA TED SCPI COMMAND(S) PROBE SCALING (MA THPLUS) * SA V , * RCL SYST em:SET PROBE UTILITIES key UTILITY SYST em:KEY 104 menu UTILITY PROBE DISPlay:MENU UTIL - softkeys n = 1 .. 6 SYST em:KEY n REMOTE CONTROL IEEE-488.
B - 24 CROSS REFERENCES FUNCTION + KEYS/MENUS RELA TED SCPI COMMAND(S) ST ANDARD FRONT/FRO NT P ANEL RESET SYST em:SET * RST key SETUPS SYST em:KEY 103 menu FRONT SETUPS DISPlay:MENU SETups - softkeys n = 1 .
CROSS REFERENCES B - 25 FUNCTION + KEYS/MENUS RELA TED SCPI COMMAND(S) TIMEBASE MODES key TB MODE SYST em:KEY 409 menu TB MODE DISPlay:MENU TBMode - softkeys n = 1 .
B - 26 CROSS REFERENCES FUNCTION + KEYS/MENUS RELA TED SCPI COMMAND(S) TRIGGERING OF SWEEPS - send GET code * TRG - abort trigger system ABORt - initiate trigger system continuously INITiate:CONT inuo.
CROSS REFERENCES B - 27 FUNCTION + KEYS/MENUS RELA TED SCPI COMMAND(S) TV TRIGGER TRIGger:TYPE VIDEO key TRIGGER SYST em:KEY 209 menu TRIGGER DISPlay:MENU TRIGger - field1, field2, lines TRIGger:VIDeo.
B - 28 CROSS REFERENCES FUNCTION + KEYS/MENUS RELA TED SCPI COMMAND(S) VOL T MEASUREME NTS key MEASURE SYST em:KEY 1 10 menu MEASURE DISPlay:MENU MEASure - softkeys n = 1 .
MANUAL CONVENTIONS C - 1 APPENDIX C MANUAL CONVENTIONS C.1 Abbreviations Used ABBREVIA TIONS USED (in alphabetical order) - ADC = Analog to Digital Conv ertor - AH = Acceptor Hands hake - ANSI = Ameri.
C - 2 MANUAL CONVENTIONS - IDY = Identify - IDN = Identification - IEC = International Electrotechnical Commission - IEEE = Institute of Electrical and Electronic Engineers - i.
MANUAL CONVENTIONS C - 3 - RAM = Random Access Memory - RCL = Recall - REN = Remote Enable - RL = Remote Local - rms = root mean square - rmt = response message terminator - rmu = response message uni.
C - 4 MANUAL CONVENTIONS C.2 Glossary of Symbols Used - µ V = micro voltage (1E-6 ) - dB = decibell - dBm = decibell with respect to 1 mW - dB µ V = decibell with respect to 1 µ V - V rms = RMS voltage (Peak / √ 2) - Hz = Her tz - m = met er - Mbyte = Megabyte - ms = milliseconds - mw = m illiwatt (1E-3) - s = seconds -% = percentage - [ .
MANUAL CONVENTIONS C - 5 C.4 List of Figures Figure 3.1 The instrument model for CombiScope instrumen ts Figure 3.2 Pulse characteristics Figure 3.3 The trigger model for acquisitions Figure 3.4 DC Coupling Figure 3.5 AC Coupling Figure 3.6 LF Reject Figure 3.
C - 6 MANUAL CONVENTIONS C.5 Documents Referenced 1) General Purpose Interface Bus (GPIB) IEC 625-1 / IEEE-488.1 Order number: 4822 872 8019 3 2) SCPI - Standard Commands for Programmable Instruments .
STANDARDS INFORMATION D - 1 APPENDIX D ST ANDARDS INFORMA TION D.1 SCPI Conformance Information All commands comply to the SCPI standard 1994.0, except for the following: -T h e * RST condition of the SENSe:V OL T age<n>[:DC]:RANG e:AUT O ON | OFF command.
D - 2 STANDARDS INFORMATION D.2 List of Implemented IEEE-488.2 Syntactical Elements The following list of elemen ts is used in the common and SCPI commands: <PROGRAM MESSAGE> Represents a sequence of zero or more <PROGRAM MESS AGE UNIT> elements, separated by <PROGRA M MESSAGE UNIT SEP ARA TOR> ELEMENTS.
STANDARDS INFORMATION D - 3 <PROGRAM MESSAGE UNIT SEP ARA TOR> Separates the <PROG RAM MESSAGE UNIT> elemen ts from one another in a <PROGRAM MESSAGE>.
SUMMARY OF SYSTEM SE TTINGS E - 1 APPENDIX E SUMMAR Y OF SYSTEM SETTINGS The following table identifie s wh ich instrument settings belong to which nod e.
E - 2 SUMMARY OF SYSTEM SETTINGS 18 Delayed timebase setti ngs length = 13 bytes delayed timebase, tri gger mode edge, TV , trigger level, delayed timebase on/of f, trigger slope pos/n eg, noise suppressio n on/of f, trigger source CH1/2/3/4, mtb, trigger delay , trigger coupling AC, DC, LF reject, HF reject.
SUMMARY OF SYSTEM SE TTINGS E - 3 65 | 66 MA TH1/ 2 set ting s length = 22 bytes MA TH1/ 2 selection, limited on/off, FF T filter Hamming/Hanning/Rectangle, adjustify scale/of fset, source1/source2, Y.
INDEX I - 1 Numerics 16-bit samples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-33 3 wire . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-97 7 wire .
I - 2 INDEX B Bandwidth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-22, 3-40, 4-23, 4-24, 4-63 Bandwidth Limiter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-18 Baudrate . . . . . .
INDEX I - 3 DC coupling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-21, 3-22, 4-117 Decimal numeric program data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . D-2 Default . . . . . . . . . .
I - 4 INDEX EXAPPA32.BAS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-8 EXAPPA4.BAS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-9 EXAPPA51.BAS . .
INDEX I - 5 GET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-16, 3-20, 4-28, 4-56, 4-124, B-26 Glitch settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-20 GROund . . . . . . .
I - 6 INDEX Internal memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-22, 4-24, 4-25 Invert . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-17 Inverted signal .
INDEX I - 7 Measuring signal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-2 Memory . . . . . . . . . . . . . . . . . . . . . . . . 3-56, 3-58, 3-60, 3-78, 4-22, 4-25, 4-111 Memory_trace . . . . . . . . . . . .
I - 8 INDEX P Pacing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-99 PAL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-24, 4-129 Parameters .
INDEX I - 9 Questionable condition register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-93 Questionable event enable regist er . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-93 Questionable event register . .
I - 10 INDEX Screen position . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-31, 3-34, 3-49 SECAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-24, 4-129 Self-test . . .
INDEX I - 11 T T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-62 T1-trg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
I - 12 INDEX TV standard . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-23, 4-130 TV trigger . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-27 TV video triggering .
Ein wichtiger Punkt beim Kauf des Geräts Fluke PM-3380B (oder sogar vor seinem Kauf) ist das durchlesen seiner Bedienungsanleitung. Dies sollten wir wegen ein paar einfacher Gründe machen:
Wenn Sie Fluke PM-3380B noch nicht gekauft haben, ist jetzt ein guter Moment, um sich mit den grundliegenden Daten des Produkts bekannt zu machen. Schauen Sie zuerst die ersten Seiten der Anleitung durch, die Sie oben finden. Dort finden Sie die wichtigsten technischen Daten für Fluke PM-3380B - auf diese Weise prüfen Sie, ob das Gerät Ihren Wünschen entspricht. Wenn Sie tiefer in die Benutzeranleitung von Fluke PM-3380B reinschauen, lernen Sie alle zugänglichen Produktfunktionen kennen, sowie erhalten Informationen über die Nutzung. Die Informationen, die Sie über Fluke PM-3380B erhalten, werden Ihnen bestimmt bei der Kaufentscheidung helfen.
Wenn Sie aber schon Fluke PM-3380B besitzen, und noch keine Gelegenheit dazu hatten, die Bedienungsanleitung zu lesen, sollten Sie es aufgrund der oben beschriebenen Gründe machen. Sie erfahren dann, ob Sie die zugänglichen Funktionen richtig genutzt haben, aber auch, ob Sie keine Fehler begangen haben, die den Nutzungszeitraum von Fluke PM-3380B verkürzen könnten.
Jedoch ist die eine der wichtigsten Rollen, die eine Bedienungsanleitung für den Nutzer spielt, die Hilfe bei der Lösung von Problemen mit Fluke PM-3380B. Sie finden dort fast immer Troubleshooting, also die am häufigsten auftauchenden Störungen und Mängel bei Fluke PM-3380B gemeinsam mit Hinweisen bezüglich der Arten ihrer Lösung. Sogar wenn es Ihnen nicht gelingen sollte das Problem alleine zu bewältigen, die Anleitung zeigt Ihnen die weitere Vorgehensweise – den Kontakt zur Kundenberatung oder dem naheliegenden Service.