Benutzeranleitung / Produktwartung P8249 des Produzenten Samsung
Zur Seite of 335
24 - S3 - C8245/P8245/C8249/P8249-032004 USER'S MANUAL S3C8245/P8245/C8249/P8249 8-Bit CMOS Microcontroller s Revision 4.
NOTIFICATION OF REVISIONS ORIGINATOR: Samsung Electronics, LSI Development Group, Ki-Heung, South Korea PRODUCT NAME: S3C8245/P8245/C8249/P8249 8-bit CMOS Microcontroller DOCUMENT NAME: S3C8245/P8245/.
REVISION DESCRIPTIONS 1. DEVICE TYPE The S3C8247/C8248 device type should be moved. Product name and document name should be changed into 'S3C8245/P8245/C8249/P8249'.
S3C8245/P8245 /C8249/P8249 8-BIT CMOS MICROCONTROLLER S USER'S MANUAL Revision 4.
Important Notice The information in this publication has been carefully checked and is believed to be entirely accurate at the time of publication. Samsung assumes no responsibility, however, for possible errors or omissions, or for any consequences resulting from the use of the information contained herein.
S3C8245/P8245/C8249/P8249 MICROCONTROLLER iii Preface The S3C8245/P8245/C8249/P8249 Microcontroller User's Manual is designed for application designers and progr ammers who are using the S3C8245/P8245/C8249/P8249 microcontroller for application development.
.
S3C8245/P8245/C8249/P8249 MICROCONTROLLER v Table of Contents Part I — Programming Model Chapter 1 Product Overview S3C8-Series Microcontrollers ........................................................................................................
vi S3C8245/P8245/C8249 /P8249 MICROCONTROLLER Table of Contents (Cont inued ) Chapter 4 Control Registers Overview ........................................................................................................................................
S3C8245/P8245/C8249/P8249 MICROCONTROLLER vii Table of Contents (Continued) Part II Hardware Descriptions Chapter 7 Clock Circuit Overview ................................................................................................................
viii S3C8245/P8245/C8249 /P8249 MICROCONTROLLER Table of Contents (Continued) Chapter 11 8-bit Timer A/B 8-Bit Timer A ....................................................................................................................................
S3C8245/P8245/C8249/P8249 MICROCONTROLLER ix Table of Contents (Continued) Chapter 15 10-bit Analog-to-Digital Converter Overview .........................................................................................................................
x S3C8245/P8245/C8249 /P8249 MICROCONTROLLER Table of Contents (Concluded ) Chapter 1 9 Electrical Data Overview ..........................................................................................................................................
S3C8245/P8245/C8249/P8249 MICROCONTROLLER xi List of Figures Figure Title Page Number Number 1-1 S3C8245/C8249 Block Diagram ............................................................................ 1-3 1-2 S3C8245/C8249 Pin Assignment (80-QFP-1420C) .
xii S3C8245/P8245/C8249 /P8249 MICROCONTROLLER List of Figures (Continued) Figure Title Page Number Number 5-1 S3C8-Series Interrupt Types ................................................................................. 5-2 5-2 S3C8245/C8249 Interrupt Structure .
S3C8245/P8245/C8249/P8249 MICROCONTROLLER xiii List of Figures (Continued) Page Title Page Number Number 10-1 Basic Timer Control Register (BTCON) .................................................................. 10-2 10-2 Basic Timer Block Diagram .
xiv S3C8245/P8245/C8249 /P8249 MICROCONTROLLER List of Figures (Concluded) Page Title Page Number Number 17-1 Voltage Booster Block Diagram ............................................................................ 17-2 17-2 Pin Connection Example .
S3C8245/P8245/C8249/P8249 MICROCONTROLLER xv List of Tables Table Title Page Number Number 1-1 S3C8245/C8249 Pin Descriptions ......................................................................... 1-5 2-1 S3C8249/P8249 Register Type Summary .......
xvi S3C8245/P8245/C8249 /P8249 MICROCONTROLLER List of Tables (Continued) Table Title Page Number Number 18-1 VLDCON Value and Detection Level ...................................................................... 18-2 19-1 Absolute Maximum Ratings ..
S3C8245/P8245/C8249/P8249 MICROCONTROLLER xvii List of Programming Tips Description Page Number Chapter 2: Address Spaces Using the Page Pointer for RAM clear (Page 0, Page1) ....................................................................... 2-5 Setting the Register Pointers .
.
S3C8245/P8245/C8249/P8249 MICROCONTROLLER xix List of Register Descriptions Register Full Register Name Page Identifier Number ADCON A/D Converter Control Register ............................................................................. 4-5 BTCON Basic Timer Control Register .
xx S3C8245/P8245/C8249 /P8249 MICROCONTROLLER List of Register Descriptions (Continued) Register Full Register Name Page Identifier Number PP Register Page Pointer .......................................................................................
S3C8245/P8245/C8249/P8249 MICROCONTROLLER xxi List of Instruction Descriptions Instruction Full Register Name Page Mnemonic Number ADC Add with Carry .................................................................................................... 6-14 ADD Add .
xxii S3C8245/P8245/C8249 /P8249 MICROCONTROLLER.
S3C8245/P8245/C8249/P8249 MICROCONTROLLER xxiii List of Instruction Descriptions (Continued) Instruction Full Register Name Page Mnemonic Number LDC/LDE Load Memory ......................................................................................
S3C8245/P8245/C8249/P8249 PRODUCT OVER VIEW 1- 1 1 PRODUCT OVERVIEW S3C8-SERIES MICROCONTROLLERS Samsung's S3C8 series of 8-bit single-chip CMOS microcontrollers offers a fast and efficient CPU, a wide range of integrated peripherals, and various mask-programmable ROM sizes.
PRODUCT OVERVIEW S3 C8245/P8245/C8249/P8249 1- 2 FEATURES Memory • ROM: 32K-byte (S3C8249/P8249) • ROM: 16K-byte (S3C8245/P8245) • RAM: 1056-Byte (S3C8249/P8249) • RAM: 544-Byte (S3C8245/P8245.
S3C8245/P8245/C8249/P8249 PRODUCT OVERV IEW 1- 3 BLOCK DIAGRAM 544/1056 Byte Register File OSC/ nRESET Basic Timer Watch Timer I/O Port and Interrupt Control 16/32-Kbyte ROM SAM88 RC CPU 8-Bit Timer/ .
PRODUCT OVERVIEW S3 C8245/P8245/C8249/P8249 1- 4 PIN ASSIGNMENT SEG25/P5.1 SEG24/P5.0 SEG23/P4.7 SEG22/P4.6 SEG21/P4.5 SEG20/P4.4 SEG19/P4.3 SEG18/P4.2 SEG17/P4.1 SEG16/P4.0 SEG15 SEG14 SEG13 SEG12 SEG11 SEG10 SEG26/P5.2 SEG27/P5.3 SEG28/P5.4 SEG29/P5.
S3C8245/P8245/C8249/P8249 PRODUCT OVERV IEW 1- 5 SEG25/P5.1 SEG24/P5.0 SEG23/P4.7 SEG22/P4.6 SEG21/P4.5 SEG20/P4.4 SEG19/P4.3 SEG18/P4.2 SEG17/P4.1 SEG16/P4.0 SEG15 SEG14 SEG13 SEG12 SEG11 SEG10 SEG9 SEG8 SEG7 SEG6 SEG26/P5.2 SEG27/P5.3 SEG28/P5.4 SEG29/P5.
PRODUCT OVERVIEW S3 C8245/P8245/C8249/P8249 1- 6 PIN DESCRIPTIONS Table 1-1. S3C8245/C8249 Pin Descriptions Pin Names Pin Type Pin Description Circuit Type Pin Numbers (note) Share Pins P0.0–P0.7 I/O I/O port with bit programmable pins; Schmitt trigger input or output mode selected by software; software assignable pull-up.
S3C8245/P8245/C8249/P8249 PRODUCT OVERV IEW 1- 7 Table 1-1. S3C8245/C8249 Pin Descriptions (Continued) Pin Names Pin Type Pin Description Circuit Type Pin Numbers (note) Share Pins ADC0–ADC6 ADC7 I A/D converter analog input channels F–10 F–18 36–42 43 P2.
PRODUCT OVERVIEW S3 C8245/P8245/C8249/P8249 1- 8 PIN CIRCUITS In V DD Figure 1-4. Pin Circuit Type B (nRESET) P-Channel N-Channel V DD Out Output Disable Data Figure 1-5. Pin Circuit Type C P-Channel I/O Output Disable Data Circuit Type C Pull-up Enable V DD Figure 1-6.
S3C8245/P8245/C8249/P8249 PRODUCT OVERV IEW 1- 9 V DD Output Disable Data Pull-up Resistor V DD I/O P-CH N-CH Schmitt Trigger Open drain Enable Figure 1-8. Pin Circuit Type E-2 (P1) Pull-up Enable Circuit Type C Data Output Disable ADCEN To ADC Data V DD I/O Figure 1-9.
PRODUCT OVERVIEW S3 C8245/P8245/C8249/P8249 1- 10 SEG V LC2 V LC1 V LC0 Output Disable Figure 1-12. Pin Circuit Type H-4 V DD Open Drain EN Data LCD Out EN SEG Output Disable Pull-up Enable V DD Circuit Type H-4 Figure 1-13.
S3C8245/P8245/C8249/P8249 ADDRESS SPACES 2- 1 2 ADDRESS SPACES OVERVIEW The S3C8245/C8249 microcontroller has two types of address space: — Internal program memory (ROM) — Internal register file A 16-bit address bus supports program memory operations.
ADDRESS SPACES S3C8245/P8245/C8249/P8249 2- 2 PROGRAM MEMORY (ROM) Program memory (ROM) stores program codes or table data. The S3C8249 has 32K bytes internal mask- programmable program memory, the S3C8245 has 16K bytes. The first 256 bytes of the ROM (0H–0FFH) are reserved for interrupt vector addresses.
S3C8245/P8245/C8249/P8249 ADDRESS SPACES 2- 3 REGISTER ARCHITECTURE In the S3C8245/C8249 implementation, the upper 64-byte area of register files is expanded two 64 -byte areas, called set 1 and set 2 .
ADDRESS SPACES S3C8245/P8245/C8249/P8249 2- 4 System Registers (Register Addressing Mode) General Purpose Register (Register Addressing Mode) Bank 1 System and Peripheral Control Registers Bank 0 Syst.
S3C8245/P8245/C8249/P8249 ADDRESS SPACES 2- 5 REGISTER PAGE POINTER (PP) The S3C8-series architecture supports the logical expansion of the physical 256-byte internal register file (using an 8-bit data bus) into as many as 16 separately addressable register pages.
ADDRESS SPACES S3C8245/P8245/C8249/P8249 2- 6 REGISTER SET 1 The term set 1 refers to the upper 64 bytes of the register file, locations C0H–FFH. The upper 32-byte area of this 64-byte space (E0H–FFH) is expanded two 32-byte register banks, bank 0 and bank 1 .
S3C8245/P8245/C8249/P8249 ADDRESS SPACES 2- 7 PRIME REGISTER SPACE The lower 192 bytes (00H–BFH) of the S3C8245/C8249's four or two 256 -byte register pages is called prime register area. Prime registers can be accessed using any of the seven addressing modes (see Chapter 3, "Addressing Modes.
ADDRESS SPACES S3C8245/P8245/C8249/P8249 2- 8 WORKING REGISTERS Instructions can access specific 8-bit registers or 16-bit register pairs using either 4-bit or 8-bit address fields.
S3C8245/P8245/C8249/P8249 ADDRESS SPACES 2- 9 USING THE REGISTER POINTS Register pointers RP0 and RP1, mapped to addresses D6H and D7H in set 1, are used to select two movable 8 -byte working register slices in the register file.
ADDRESS SPACES S3C8245/P8245/C8249/P8249 2- 10 16-Byte Contiguous working Register block Register File Contains 32 8-Byte Slices 0 0 0 0 0 X X X RP1 1 1 1 1 0 X X X RP0 0H (R0) 7H (R15) F0H (R0) F7H (R7) 8-Byte Slice 8-Byte Slice Figure 2-7.
S3C8245/P8245/C8249/P8249 ADDRESS SPACES 2- 11 REGISTER ADDRESSING The S3C8-series register architecture provides an efficient method of working register addressing that takes full advantage of shorter instruction formats to reduce execution time.
ADDRESS SPACES S3C8245/P8245/C8249/P8249 2- 12 RP1 RP0 Register Pointers 00H All Addressing Modes Page 0 Indirect Register, Indexed Addressing Modes Page 0 Register Addressing Only Can be Pointed by R.
S3C8245/P8245/C8249/P8249 ADDRESS SPACES 2- 13 COMMON WORKING REGISTER AREA (C0H–CFH) After a reset, register pointers RP0 and RP1 automatically select two 8-byte register slices in set 1, locations C0H– CFH, as the active 16-byte working register block: RP0 → C0H–C7H RP1 → C8H–CFH This 16-byte address range is called common area .
ADDRESS SPACES S3C8245/P8245/C8249/P8249 2- 14 + PROGRAMMING TIP — Addressing the Common Working Register Area As the following examples show, you should access working registers in the common area, locations C0H–CFH, using working register addressing mode only.
S3C8245/P8245/C8249/P8249 ADDRESS SPACES 2- 15 Together they create an 8-bit register address Register pointer provides five high-order bits Address OPCODE Selects RP0 or RP1 RP1 RP0 4-bit address provides three low-order bits Figure 2-11.
ADDRESS SPACES S3C8245/P8245/C8249/P8249 2- 16 8-BIT WORKING REGISTER ADDRESSING You can also use 8-bit working register addressing to access registers in a selected working register area. To initiate 8-bit working register addressing, the upper four bits of the instruction address must contain the value "1100B.
S3C8245/P8245/C8249/P8249 ADDRESS SPACES 2- 17 8-bit address form instruction 'LD R11, R2' RP0 0 1 1 0 0 0 0 0 1 1 0 0 1 0 1 1 Selects RP1 R11 Register address (0ABH) RP1 1 0 1 0 1 0 0 0 1 0 1 0 1 0 1 1 Specifies working register addressing Figure 2-14.
ADDRESS SPACES S3C8245/P8245/C8249/P8249 2- 18 SYSTEM AND USER STACK The S3C8-series microcontrollers use the system stack for data storage, subroutine calls and returns. The PUSH and POP instructions are used to control system stack operations. The S3C8245/C8249 architecture supports stack operations in the internal register file.
S3C8245/P8245/C8249/P8249 ADDRESS SPACES 2- 19 + PROGRAMMING TIP — Standard Stack Operations Using PUSH and POP The following example shows you how to perform stack operations in the internal regist.
ADDRESS SPACES S3C8245/P8245/C8249/P8249 2- 20 NOTES.
S3C8245/P8245/C8249/P8249 ADDRESSING MO DES 3- 1 3 ADDRESSING MODES OVERVIEW Instructions that are stored in program memory are fetched for execution using the program counter. Instructions indicate the operation to be performed and the data to be operated on.
ADDRESSING MODES S3 C8245/P8245/C8249/P8249 3- 2 REGISTER ADDRESSING MODE (R) In Register addressing mode (R), the operand value is the content of a specified register or register pair (see Figure 3-1).
S3C8245/P8245/C8249/P8249 ADDRESSING MO DES 3- 3 INDIRECT REGISTER ADDRESSING MODE (IR) In Indirect Register (IR) addressing mode, the content of the specified register or register pair is the address of the operand.
ADDRESSING MODES S3 C8245/P8245/C8249/P8249 3- 4 INDIRECT REGISTER ADDRESSING MODE (C ontinued ) dst OPCODE PAIR Points to Register Pair Example Instruction References Program Memory Sample Instructio.
S3C8245/P8245/C8249/P8249 ADDRESSING MO DES 3- 5 INDIRECT REGISTER ADDRESSING MODE (C ontinued ) dst OPCODE ADDRESS 4-bit Working Register Address Point to the Working Register (1 of 8) Sample Instruc.
ADDRESSING MODES S3 C8245/P8245/C8249/P8249 3- 6 INDIRECT REGISTER ADDRESSING MODE (C oncluded ) dst OPCODE 4-bit Working Register Address Sample Instructions: LCD R5,@RR6 ; Program memory access LDE .
S3C8245/P8245/C8249/P8249 ADDRESSING MO DES 3- 7 INDEXED ADDRESSING MODE (X) Indexed (X) addressing mode adds an offset value to a base address during instruction execution in order to calculate the effective operand address (see Figure 3-7).
ADDRESSING MODES S3 C8245/P8245/C8249/P8249 3- 8 INDEXED ADDRESSING MODE (C ontinued ) Register File OPERAND Program Memory or Data Memory Point to Working Register Pair (1 of 4) LSB Selects 16-Bit ad.
S3C8245/P8245/C8249/P8249 ADDRESSING MO DES 3- 9 INDEXED ADDRESSING MODE (C oncluded ) Register File OPERAND Program Memory or Data Memory Point to Working Register Pair LSB Selects 16-Bit address add.
ADDRESSING MODES S3 C8245/P8245/C8249/P8249 3- 10 DIRECT ADDRESS MODE (DA) In Direct Address (DA) mode, the instruction provides the operand's 16-bit memory address. Jump (JP) and Call (CALL) instructions use this addressing mode to specify the 16-bit destination address that is loaded into the PC whenever a JP or CALL instruction is executed.
S3C8245/P8245/C8249/P8249 ADDRESSING MO DES 3- 11 DIRECT ADDRESS MODE (C ontinued ) OPCODE Program Memory Lower Address Byte Memory Address Used Upper Address Byte Sample Instructions: JP C,JOB1 ; Where JOB1 is a 16-bit immediate address CALL DISPLAY ; Where DISPLAY is a 16-bit immediate address Next OPCODE Figure 3-11.
ADDRESSING MODES S3 C8245/P8245/C8249/P8249 3- 12 INDIRECT ADDRESS MODE (IA) In Indirect Address (IA) mode, the instruction specifies an address located in the lowest 256 bytes of the program memory. The selected pair of memory locations contains the actual address of the next instruction to be executed.
S3C8245/P8245/C8249/P8249 ADDRESSING MO DES 3- 13 RELATIVE ADDRESS MODE (RA) In Relative Address (RA) mode, a twos-complement signed displacement between – 128 and + 127 is specified in the instruction. The displacement value is then added to the current PC value.
ADDRESSING MODES S3 C8245/P8245/C8249/P8249 3- 14 IMMEDIATE MODE (IM) In Immediate (IM) addressing mode, the operand value used in the instruction is the value supplied in the operand field itself. The operand may be one byte or one word in length, depending on the instruction used.
S3C8245/P8245/C8249/P8249 CONTROL REGIS TER 4- 1 4 CONTROL REGISTERS OVERVIEW In this chapter , deta iled descriptions of the S3C8245/C8249 control registers are presented in an easy-to-read format. You can use this chapter as a quick-reference source when writing application programs.
CONTROL REGISTERS S 3C8245/P8245/C8249/P8249 4- 2 T able 4- 2 . Set 1, Bank 0 Registers Register Name Mnemonic Decimal Hex R/W Port 0 control High register P0 CONH 224 E0H R/W Port 0 control Low regis.
S3C8245/P8245/C8249/P8249 CONTROL REGIS TER 4- 3 Table 4- 3 . Set 1, Bank 1 Registers Register Name Mnemonic Decimal Hex R/W Locations E0H–EBH is not mapped.
CONTROL REGISTERS S 3C8245/P8245/C8249/P8249 4- 4 FLAGS - System Flags Register .7 Carry Flag (C) .6 Zero Flag (Z) .5 Bit Identifier nRESET Value Read/Write Bit Addressing Mode R = Read-only W = Write.
S3C8245/P8245/C8249/P8249 CONTROL REGIS TER 4- 5 AD CON — A/D Converter Control Register F7 H Set 1 , Bank 1 Bit Identifier .7 .6 .5 .4 .3 .2 .1 .0 nRESET Value –0000000 Read/Write – R/W R/W R/W R R/W R/W R/W Addressing Mode Register addressing mode only .
CONTROL REGISTERS S 3C8245/P8245/C8249/P8249 4- 6 BTCON — Basic Timer Control Register D3H Set 1 Bit Identifier .7 .6 .5 .4 .3 .2 .1 .0 nRESET Value 00000000 Read/Write R/W R/W R/W R/W R/W R/W R/W R/W Addressing Mode Register addressing mode only .7–.
S3C8245/P8245/C8249/P8249 CONTROL REGIS TER 4- 7 CLKCON — System Clock Control Register D4H Set 1 Bit Identifier .7 .6 .5 .4 .3 .2 .1 .0 nRESET Value 00000000 Read/Write ––– R/W R/W ––– Addressing Mode Register addressing mode only .7– .
CONTROL REGISTERS S 3C8245/P8245/C8249/P8249 4- 8 EMT — External Memory Timing Register FE H Set 1 , Bank 0 Bit Identifier .7 .6 .5 .4 .3 .2 .1 .0 nRESET Value 0––––––– Read/Write –––––––– Addressing Mode Register addressing mode only .
S3C8245/P8245/C8249/P8249 CONTROL REGIS TER 4- 9 FLAGS — System Flags Register D5H Set 1 Bit Identifier .7 .6 .5 .4 .3 .2 .1 .0 nRESET Value xxxxxx 0 0 Read/Write R/W R/W R/W R/W R/W R/W R R/W Addressing Mode Register addressing mode only .
CONTROL REGISTERS S 3C8245/P8245/C8249/P8249 4- 10 IMR — Interrupt Mask Register DDH Set 1 Bit Identifier .7 .6 .5 .4 .3 .2 .1 .0 nRESET Value xxxxxxxx Read/Write R/W R/W R/W R/W R/W R/W R/W R/W Addressing Mode Register addressing mode only . 7 Interrupt Level 7 (IRQ 7 ) Enable Bit; External Interrupts P0.
S3C8245/P8245/C8249/P8249 CONTROL REGIS TER 4- 11 I NTPND — Interrupt Pending Register D 2 H Set 1 Bit Identifier .7 .6 .5 .4 .3 .2 .1 .0 nRESET Value –––––000 Read/Write ––––– R/W R/W R/W Addressing Mode Register addressing mode only .
CONTROL REGISTERS S 3C8245/P8245/C8249/P8249 4- 12 IPH — Instruction Pointer (High Byte ) DAH Set 1 Bit Identifier .7 .6 .5 .4 .3 .2 .1 .0 nRESET Value xxxxxxxx Read/Write R/W R/W R/W R/W R/W R/W R/W R/W Addressing Mode Register addressing mode only .
S3C8245/P8245/C8249/P8249 CONTROL REGIS TER 4- 13 IPR — Interrupt Priority Register FFH Set 1 , Bank 0 Bit Identifier .7 .6 .5 .4 .3 .2 .1 .0 nRESET Value xxxxxxxx Read/Write R/W R/W R/W R/W R/W R/W R/W R/W Addressing Mode Register addressing mode only .
CONTROL REGISTERS S 3C8245/P8245/C8249/P8249 4- 14 IRQ — Interrupt Request Register DCH Set 1 Bit Identifier .7 .6 .5 .4 .3 .2 .1 .0 nRESET Value 00000000 Read/Write RRRRRRRR Addressing Mode Register addressing mode only . 7 Level 7 (IRQ 7 ) Request Pending Bit; External Interrupts P0.
S3C8245/P8245/C8249/P8249 CONTROL REGIS TER 4- 15 LCON — LCD Control Register D0 H Set 1 Bit Identifier .7 .6 .5 .4 .3 .2 .1 .0 nRESET Value 00000000 Read/Write R/W R/W R/W R/W – R/W R/W R/W Addressing Mode Register addressing mode only . 7 LCD Output Segment and Pin Configuration Bits 0 P5.
CONTROL REGISTERS S 3C8245/P8245/C8249/P8249 4- 16 1 COM and SEG output is in display mode; turn display on.
S3C8245/P8245/C8249/P8249 CONTROL REGIS TER 4- 17 LMOD — LCD Mode Control Register D1H Set 1 Bit Identifier .7 .6 .5 .4 .3 .2 .1 .0 nRESET Value 00000000 Read/Write – – R/W R/W R/W R/W R/W R/W Addressing Mode Register addressing mode only .7 – .
CONTROL REGISTERS S 3C8245/P8245/C8249/P8249 4- 18 OSCCON — Oscillator Control Register F3H Set 1 ,Bank 0 Bit Identifier .7 .6 .5 .4 .3 .2 .1 .0 nRESET Value 00000000 Read/Write ––– R/W R/W R/W – R/W Addressing Mode Register addressing mode only .
S3C8245/P8245/C8249/P8249 CONTROL REGIS TER 4- 19 P0CON H — Port 0 Control Register (High Byte) E0H Set 1,Bank 0 Bit Identifier .7 .6 .5 .4 .3 .2 .1 .0 nRESET Value 00000000 Read/Write R/W R/W R/W R/W R/W R/W R/W R/W Addressing Mode Register addressing mode only .
CONTROL REGISTERS S 3C8245/P8245/C8249/P8249 4- 20 P0CON L — Port 0 Control Register (Low Byte) E1H Set 1, Bank 0 Bit Identifier .7 .6 .5 .4 .3 .2 .1 .0 nRESET Value 00000000 Read/Write R/W R/W R/W R/W R/W R/W R/W R/W Addressing Mode Register addressing mode only .
S3C8245/P8245/C8249/P8249 CONTROL REGIS TER 4- 21 P0 INT — Port 0 Interrupt Control Register E2H Set 1, Bank 0 Bit Identifier .7 .6 .5 .4 .3 .2 .1 .0 nRESET Value 00000000 Read/Write R/W R/W R/W R/W R/W R/W R/W R/W Addressing Mode Register addressing mode only .
CONTROL REGISTERS S 3C8245/P8245/C8249/P8249 4- 22 P0 PND — Port 0 Interrupt Pending Register E3H Set 1, Bank 0 Bit Identifier .7 .6 .5 .4 .3 .2 .1 .0 nRESET Value 00000000 Read/Write R/W R/W R/W R/W R/W R/W R/W R/W Addressing Mode Register addressing mode only .
S3C8245/P8245/C8249/P8249 CONTROL REGIS TER 4- 23 0 Interrupt request is not pending, pending bit clear when write 0 1 Interrupt request is pending.
CONTROL REGISTERS S 3C8245/P8245/C8249/P8249 4- 24 P 1 CON H — Port 1 Control Register (High Byte) E 4 H Set 1 , Bank 0 Bit Identifier .7 .6 .5 .4 .3 .2 .1 .0 nRESET Value 00000000 Read/Write R/W R/W R/W R/W R/W R/W R/W R/W Addressing Mode Register addressing mode only .
S3C8245/P8245/C8249/P8249 CONTROL REGIS TER 4- 25 P 1 CON L — Port 1 Control Register (Low Byte) E 5 H Set 1 , Bank 0 Bit Identifier .7 .6 .5 .4 .3 .2 .1 .0 nRESET Value 00000000 Read/Write R/W R/W R/W R/W R/W R/W R/W R/W Addressing Mode Register addressing mode only .
CONTROL REGISTERS S 3C8245/P8245/C8249/P8249 4- 26 P 1PUP — Port 1 Pull-up Control Register F5H Set 1, Bank 0 Bit Identifier .7 .6 .5 .4 .3 .2 .1 .0 nRESET Value 00000000 Read/Write R/W R/W R/W R/W R/W R/W R/W R/W Addressing Mode Register addressing mode only .
S3C8245/P8245/C8249/P8249 CONTROL REGIS TER 4- 27.
CONTROL REGISTERS S 3C8245/P8245/C8249/P8249 4- 28 P 2 CONH — Port 2 Control Register (High Byte ) E 6 H Set 1 , Bank 0 Bit Identifier .7 .6 .5 .4 .3 .2 .1 .0 nRESET Value 00000000 Read/Write R/W R/W R/W R/W R/W R/W R/W R/W Addressing Mode Register addressing mode only .
S3C8245/P8245/C8249/P8249 CONTROL REGIS TER 4- 29 P 2 CONL — Port 2 Control Register (Low Byte ) E7 H Set 1 , Bank 0 Bit Identifier .7 .6 .5 .4 .3 .2 .1 .0 nRESET Value 00000000 Read/Write R/W R/W R/W R/W R/W R/W R/W R/W Addressing Mode Register addressing mode only .
CONTROL REGISTERS S 3C8245/P8245/C8249/P8249 4- 30 P 3 CONH — Port 3 Control Register (High Byte ) E 8 H Set 1 , Bank 0 Bit Identifier .7 .6 .5 .4 .3 .2 .1 .0 nRESET Value 00000000 Read/Write –––––– R/W R/W Addressing Mode Register addressing mode only .
S3C8245/P8245/C8249/P8249 CONTROL REGIS TER 4- 31 P3 CONL — Port 3 Control Register (Low Byte ) E9 H Set 1 , Bank 0 Bit Identifier .7 .6 .5 .4 .3 .2 .1 .0 nRESET Value 00000000 Read/Write R/W R/W R/W R/W R/W R/W R/W R/W Addressing Mode Register addressing mode only .
CONTROL REGISTERS S 3C8245/P8245/C8249/P8249 4- 32 P4 CONH — Port 4 Control Register (High Byte ) E CH Set 1 , Bank 1 Bit Identifier .7 .6 .5 .4 .3 .2 .1 .0 nRESET Value 00000000 Read/Write R/W R/W R/W R/W R/W R/W R/W R/W Addressing Mode Register addressing mode only .
S3C8245/P8245/C8249/P8249 CONTROL REGIS TER 4- 33 P4 CONL — Port 4 Control Register (Low Byte ) ED H Set 1 , Bank 1 Bit Identifier .7 .6 .5 .4 .3 .2 .1 .0 nRESET Value 00000000 Read/Write R/W R/W R/W R/W R/W R/W R/W R/W Addressing Mode Register addressing mode only .
CONTROL REGISTERS S 3C8245/P8245/C8249/P8249 4- 34 P5CONH — Port 5 Control Register (High Byte ) EE H Set 1 , Bank 1 Bit Identifier .7 .6 .5 .4 .3 .2 .1 .0 nRESET Value 00000000 Read/Write R/W R/W R/W R/W R/W R/W R/W R/W Addressing Mode Register addressing mode only .
S3C8245/P8245/C8249/P8249 CONTROL REGIS TER 4- 35 P5 CONL — Port 5 Control Register (Low Byte ) EF H Set 1 , Bank 1 Bit Identifier .7 .6 .5 .4 .3 .2 .1 .0 nRESET Value 00000000 Read/Write R/W R/W R/W R/W R/W R/W R/W R/W Addressing Mode Register addressing mode only .
CONTROL REGISTERS S 3C8245/P8245/C8249/P8249 4- 36 PP — Register Page Pointer DFH Set 1 Bit Identifier .7 .6 .5 .4 .3 .2 .1 .0 nRESET Value 00000000 Read/Write R/W R/W R/W R/W R/W R/W R/W R/W Addressing Mode Register addressing mode only .
S3C8245/P8245/C8249/P8249 CONTROL REGIS TER 4- 37 RP0 — Register Pointer 0 D6H Set 1 Bit Identifier .7 .6 .5 .4 .3 .2 .1 .0 nRESET Value 11000––– Read/Write R/W R/W R/W R/W R/W ––– Addressing Mode Register addressing only .
CONTROL REGISTERS S 3C8245/P8245/C8249/P8249 4- 38 SIOCON — SIO Control Register FO H Set 1 , Bank 0 Bit Identifier .7 .6 .5 .4 .3 .2 .1 .0 nRESET Value 10000000 Read/Write R/W R/W R/W R/W R/W R/W R/W R/W Addressing Mode Register addressing mode only .
S3C8245/P8245/C8249/P8249 CONTROL REGIS TER 4- 39 SPH — Stack Pointer (High Byte ) D8H Set 1 Bit Identifier .7 .6 .5 .4 .3 .2 .1 .0 nRESET Value xxxxxxxx Read/Write R/W R/W R/W R/W R/W R/W R/W R/W Addressing Mode Register addressing mode only .7 – .
CONTROL REGISTERS S 3C8245/P8245/C8249/P8249 4- 40 STPCON — Stop Control Register F 4 H Set 1 , Bank 0 Bit Identifier .7 .6 .5 .4 .3 .2 .1 .0 nRESET Value 00000000 Read/Write R/W R/W R/W R/W R/W R/W R/W R/W Addressing Mode Register addressing mode only .
S3C8245/P8245/C8249/P8249 CONTROL REGIS TER 4- 41 SYM — System Mode Register DE H Set 1 Bit Identifier .7 .6 .5 .4 .3 .2 .1 .0 nRESET Value 0–– xxx 0 0 Read/Write R/W – – R/W R/W R/W R/W R/W Addressing Mode Register addressing mode only .7 Not used, But you must keep "0" .
CONTROL REGISTERS S 3C8245/P8245/C8249/P8249 4- 42 T0CON — Timer 0 Control Register F1 H Set 1 , Bank 1 Bit Identifier .7 .6 .5 .4 .3 .2 .1 .0 nRESET Value 000–0000 Read/Write R/W R/W R/W – R/W R/W R/W R/W Addressing Mode Register addressing mode only .
S3C8245/P8245/C8249/P8249 CONTROL REGIS TER 4- 43 T1CON — Timer 1 Control Register FB H Set 1 , Bank 1 Bit Identifier .7 .6 .5 .4 .3 .2 .1 .0 nRESET Value 00000000 Read/Write R/W R/W R/W R/W R/W R/W R/W R/W Addressing Mode Register addressing mode only .
CONTROL REGISTERS S 3C8245/P8245/C8249/P8249 4- 44 T A CON — Timer A Control Register ED H Set 1 , Bank 0 Bit Identifier .7 .6 .5 .4 .3 .2 .1 .0 nRESET Value 00000000 Read/Write R/W R/W R/W R/W R/W R/W R/W R/W Addressing Mode Register addressing mode only .
S3C8245/P8245/C8249/P8249 CONTROL REGIS TER 4- 45 T B CON — Timer B Control Register EC H Set 1 , Bank 0 Bit Identifier .7 .6 .5 .4 .3 .2 .1 .0 nRESET Value 00 000000 Read/Write R/W R/W R/W R/W R/W R/W R/W R/W Addressing Mode Register addressing mode only .
CONTROL REGISTERS S 3C8245/P8245/C8249/P8249 4- 46 VLDCON — Voltage Level Detector Control Register F6 H Set 1 , Bank 1 Bit Identifier .7 .6 .5 .4 .3 .2 .1 .0 nRESET Value 00000000 Read/Write ––– R/W R/W R/W R/W R/W Addressing Mode Register addressing mode only .
S3C8245/P8245/C8249/P8249 CONTROL REGIS TER 4- 47 WT CON — Watch Timer Control Register FA H Set 1 , Bank 1 Bit Identifier .7 .6 .5 .4 .3 .2 .1 .0 nRESET Value 00000000 Read/Write R/W R/W R/W R/W R/W R/W R/W R/W Addressing Mode Register addressing mode only .
S3C8245/P8245/C8249/P8249 INTERRUPT STRUCTURE 5 - 1 5 INTERRUPT STRUCTURE OVERVIEW The S3C8-series interrupt structure has three basic components: levels, vectors, and sources. The SAM8 CPU recognizes up to eight interrupt levels and supports up to 128 interrupt vectors.
INTERRUPT STRUCTURE S3C8245/P8245/C8249 /P8249 5- 2 INTERRUPT TYPES The three components of the S3C8 interrupt structure described before — levels, vectors, and sources — are combined to determine the interrupt structure of an individual device and to make full use of its available interrupt logic.
S3C8245/P8245/C8249/P8249 INTERRUPT STRUCTURE 5 - 3 S3C8245/C8249 INTERRUPT STRUCTURE The S3C8245/C8249 microcontroller supports sixteen interrupt sources.
INTERRUPT STRUCTURE S3C8245/P8245/C8249 /P8249 5- 4 INTERRUPT VECTOR ADDRESSES All interrupt vector addresses for the S3C8245/C8249 interrupt structure are stored in the vector address area of the internal 32- Kbyte ROM, 0H– 7 FFF H , or 8, 16, 24-Kbyte (see Figure 5-3).
S3C8245/P8245/C8249/P8249 INTERRUPT STRUCTURE 5 - 5 Table 5-1. I nterrupt Vectors Vector Address Interrupt Source Request Reset/Clear Decimal Value Hex Value Interrupt Level Priority in Level H/W S/W .
INTERRUPT STRUCTURE S3C8245/P8245/C8249 /P8249 5- 6 ENABLE/DISABLE INTERRUPT INSTRUCTIONS (EI, DI ) Executing the Enable Interrupts (EI) instruction globally enables the interrupt structure. All interrupts are then serviced as they occur according to the established priorities.
S3C8245/P8245/C8249/P8249 INTERRUPT STRUCTURE 5 - 7 INTERRUPT PROCESSING CONTROL POINTS Interrupt processing can therefore be controlled in two ways: globally or by specific interrupt level and source.
INTERRUPT STRUCTURE S3C8245/P8245/C8249 /P8249 5- 8 PERIPHERAL INTERRUPT CONTROL REGISTERS For each interrupt source there is one or more corresponding peripheral control registers that let you control the interrupt generated by the related peripheral (see Table 5-3).
S3C8245/P8245/C8249/P8249 INTERRUPT STRUCTURE 5 - 9 SYSTEM MODE REGISTER (SYM ) The system mode register, SYM (set 1, DEH), is used to globally enable and disable interrupt processing and to control fast interrupt processing (see Figure 5-5). A reset clears SYM.
INTERRUPT STRUCTURE S3C8245/P8245/C8249 /P8249 5- 10 INTERRUPT MASK REGISTER (IMR ) The interrupt mask register, IMR (set 1, DDH) is used to enable or disable interrupt processing for individual interrupt levels.
S3C8245/P8245/C8249/P8249 INTERRUPT STRUCTURE 5 - 11 INTERRUPT PRIORITY REGISTER (IPR ) The interrupt priority register, IPR (set 1, bank 0, FFH), is used to set the relative priorities of the interrupt levels in the microcontroller’s interrupt structure.
INTERRUPT STRUCTURE S3C8245/P8245/C8249 /P8249 5- 12 Interrupt Priority Register (IPR) FFH, Set 1, Bank 0, R/W .7 .6 .5 .4 .3 .2 .1 .0 MSB LSB Group A: 0 = IRQ0 > IRQ1 1 = IRQ1 > IRQ0 Subgroup B.
S3C8245/P8245/C8249/P8249 INTERRUPT STRUCTURE 5 - 13 INTERRUPT REQUEST REGISTER (IRQ ) You can poll bit values in the interrupt request register, IRQ (set 1, DCH), to monitor interrupt request status for all levels in the microcontroller’s interrupt structure.
INTERRUPT STRUCTURE S3C8245/P8245/C8249 /P8249 5- 14 INTERRUPT PENDING FUNCTION TYPES Overview There are two types of interrupt pending bits: o ne type that is automatically cleared by hardware after the interrupt service routine is acknowledged and executed; the other that must be cleared in the interrupt service routine.
S3C8245/P8245/C8249/P8249 INTERRUPT STRUCTURE 5 - 15 INTERRUPT SOURCE POLLING SEQUENCE The interrupt request polling and servicing sequence is as follows: 1. A source generates an interrupt request by setting the interrupt request bit to "1".
INTERRUPT STRUCTURE S3C8245/P8245/C8249 /P8249 5- 16 GENERATING INTERRUPT VECTOR ADDRESSES The interrupt vector area in the ROM (00H–FFH) contains the addresses of interrupt service routines that correspond to each level in the interrupt structure. Vectored interrupt processing follows this sequence: 1.
S3C8245/P8245/C8249/P8249 INTERRUPT STRUCTURE 5 - 17 FAST INTERRUPT PROCESSING ( Continued) Two other system registers support fast interrupt processing: — The instruction pointer (IP) contains the .
INTERRUPT STRUCTURE S3C8245/P8245/C8249 /P8249 5- 18 NOTES.
S3C8245/P8245/C8249/P8249 INSTRUCTION S ET 6- 1 6 INSTRUCTION SET OVERVIEW The SAM8 instruction set is specifically designed to support the large register files that are typical of most SAM8 microcontrollers.
INSTRUCTION SET S3C8245/ P8245/C8249/P8249 6- 2 Table 6-1. Instruction Group Summary Mnemonic Operands Instruction Load Instructions CLR dst Clear LD dst,src Load LDB dst,src Load bit LDE dst,src Load.
S3C8245/P8245/C8249/P8249 INSTRUCTION S ET 6- 3 Table 6-1. Instruction Group Summary (Continued) Mnemonic Operands Instruction Arithmetic Instructions ADC dst,src Add with carry ADD dst,src Add CP dst.
INSTRUCTION SET S3C8245/ P8245/C8249/P8249 6- 4 Table 6-1. Instruction Group Summary (Continued) Mnemonic Operands Instruction Program Control Instructions BTJRF dst,src Bit test and jump relative on .
S3C8245/P8245/C8249/P8249 INSTRUCTION S ET 6- 5 Table 6-1. Instruction Group Summary (Concluded) Mnemonic Operands Instruction Rotate and Shift Instructions RL dst Rotate left RLC dst Rotate left thro.
INSTRUCTION SET S3C8245/ P8245/C8249/P8249 6- 6 FLAGS REGISTER (FLAGS) The flags register FLAGS contains eight bits that describe the current status of CPU operations. Four of these bits, FLAGS.7–FLAGS.4, can be tested and used with conditional jump instructions; two others FLAGS.
S3C8245/P8245/C8249/P8249 INSTRUCTION S ET 6- 7 FLAG DESCRIPTIONS C Carry Flag (FLAGS.7) The C flag is set to "1" if the result from an arithmetic operation generates a carry-out from or a borrow to the bit 7 position (MSB). After rotate and shift operations, it contains the last value shifted out of the specified register.
INSTRUCTION SET S3C8245/ P8245/C8249/P8249 6- 8 INSTRUCTION SET NOTATION Table 6-2. Flag Notation Conventions Flag Description C Carry flag Z Zero flag S Sign flag V Overflow flag D Decimal-adjust fla.
S3C8245/P8245/C8249/P8249 INSTRUCTION S ET 6- 9 Table 6-4. Instruction Notation Conventions Notation Description Actual Operand Range cc Condition code See list of condition codes in Table 6-6. r Working register only Rn (n = 0–15) rb Bit (b) of working register Rn.
INSTRUCTION SET S3C8245/ P8245/C8249/P8249 6- 10 Table 6-5. Opcode Quick Reference OPCODE MAP LOWER NIBBLE (HEX) – 012345 6 7 U 0 DEC R1 DEC IR1 ADD r1,r2 ADD r1,Ir2 ADD R2,R1 ADD IR2,R1 ADD R1,IM BOR r0–Rb P 1 RLC R1 RLC IR1 ADC r1,r2 ADC r1,Ir2 ADC R2,R1 ADC IR2,R1 ADC R1,IM BCP r1.
S3C8245/P8245/C8249/P8249 INSTRUCTION S ET 6- 11 Table 6-5. Opcode Quick Reference (Continued) OPCODE MAP LOWER NIBBLE (HEX) – 8 9 AB CD E F U 0 LD r1,R2 LD r2,R1 DJNZ r1,RA JR cc,RA LD r1,IM JP cc,.
INSTRUCTION SET S3C8245/ P8245/C8249/P8249 6- 12 CONDITION CODES The opcode of a conditional jump always contains a 4-bit field called the condition code (cc).
S3C8245/P8245/C8249/P8249 INSTRUCTION S ET 6- 13 INSTRUCTION DESCRIPTIONS This section contains detailed information and programming examples for each instruction in the SAM8 instruction set. Information is arranged in a consistent format for improved readability and for fast referencing.
INSTRUCTION SET S3C8245/ P8245/C8249/P8249 6- 14 ADC — Add with carry ADC dst,src Operation: dst ← dst + src + c The source operand, along with the setting of the carry flag, is added to the destination operand and the sum is stored in the destination.
S3C8245/P8245/C8249/P8249 INSTRUCTION S ET 6- 15 ADD — Add ADD dst,src Operation: dst ← dst + src The source operand is added to the destination operand and the sum is stored in the destination. The contents of the source are unaffected. Two's-complement addition is performed.
INSTRUCTION SET S3C8245/ P8245/C8249/P8249 6- 16 AND — Logical AND AND dst,src Operation: dst ← dst AND src The source operand is logically ANDed with the destination operand.
S3C8245/P8245/C8249/P8249 INSTRUCTION S ET 6- 17 BAND — Bit AND BAND dst,src.b BAND dst.b,src Operation: dst(0) ← dst(0) AND src(b) or dst(b) ← dst(b) AND src(0) The specified bit of the source (or the destination) is logically ANDed with the zero bit (LSB) of the destination (or source).
INSTRUCTION SET S3C8245/ P8245/C8249/P8249 6- 18 BCP — Bit Compare BCP dst,src.b Operation: dst(0) – src(b) The specified bit of the source is compared to (subtracted from) bit zero (L SB) of the destination. The zero flag is set if the bits are the same; otherwise it is cleared.
S3C8245/P8245/C8249/P8249 INSTRUCTION S ET 6- 19 BITC — Bit Complement BITC dst.b Operation: dst(b) ← NOT dst(b) This instruction complements the specified bit within the destination without affecting any other bits in the destination. Flags: C: Unaffected.
INSTRUCTION SET S3C8245/ P8245/C8249/P8249 6- 20 BITR — Bit Reset BITR dst.b Operation: dst( b) ← 0 The BITR instruction clears the specified bit within the destination without affecting any other bits in the destination. Flags: No flags are affected.
S3C8245/P8245/C8249/P8249 INSTRUCTION S ET 6- 21 BITS — Bit Set BITS dst.b Operation: dst(b) ← 1 The BITS instruction sets the specified bit within the destination without affecting any other bits in the destination.
INSTRUCTION SET S3C8245/ P8245/C8249/P8249 6- 22 BOR — Bit OR BOR dst,src.b BOR dst.b,src Operation: dst(0) ← dst(0) OR src(b) or dst(b) ← dst(b) OR src(0) The specified bit of the source (or the destination) is logically ORed with bit zero (LSB) of the destination (or the source).
S3C8245/P8245/C8249/P8249 INSTRUCTION S ET 6- 23 BTJRF — Bit Test, Jump Relative on False BTJRF dst,src.b Operation: If src(b) is a "0", then PC ← PC + dst The specified bit within the source operand is tested.
INSTRUCTION SET S3C8245/ P8245/C8249/P8249 6- 24 BTJRT — Bit Test, Jump Relative on True BTJRT dst,src.b Operation: If src(b) is a "1", then PC ← PC + dst The specified bit within the source operand is tested.
S3C8245/P8245/C8249/P8249 INSTRUCTION S ET 6- 25 BXOR — Bit XOR BXOR dst,src.b BXOR dst.b,src Operation: dst(0) ← dst(0) XOR src(b) or dst(b) ← dst(b) XOR src(0) The specified bit of the source (or the destination) is logically exclusive-ORed with bit zero (LSB) of the destination (or source).
INSTRUCTION SET S3C8245/ P8245/C8249/P8249 6- 26 CALL — Call Procedure CALL dst Operation: SP ← SP – 1 @SP ← PCL SP ← SP –1 @SP ← PCH PC ← dst The current contents of the program counter are pushed onto the top of the stack. The program counter value used is the address of the first instruction following the CALL instruction.
S3C8245/P8245/C8249/P8249 INSTRUCTION S ET 6- 27 CCF — Complement Carry Flag CCF Operation: C ← NOT C The carry flag (C) is complemented. If C = "1", the value of the carry flag is changed to logic zero; if C = "0", the value of the carry flag is changed to logic one.
INSTRUCTION SET S3C8245/ P8245/C8249/P8249 6- 28 CLR — Clear CLR dst Operation: dst ← "0" The destination location is cleared to "0".
S3C8245/P8245/C8249/P8249 INSTRUCTION S ET 6- 29 COM — Complement COM dst Operation: dst ← NOT dst The contents of the destination location are complemented (one's complement); all "1s" are changed to "0s", and vice-versa.
INSTRUCTION SET S3C8245/ P8245/C8249/P8249 6- 30 CP — Compare CP dst,src Operation: dst – src The source operand is compared to (subtracted from) the destination operand, and the appropriate flags are set accordingly. The contents of both operands are unaffected by the comparison.
S3C8245/P8245/C8249/P8249 INSTRUCTION S ET 6- 31 CPIJE — Compare, Increment, and Jump on Equal CPIJE dst,src,RA Operation: If dst – src = "0", PC ← PC + RA Ir ← Ir + 1 The source operand is compared to (subtracted from) the destination operand.
INSTRUCTION SET S3C8245/ P8245/C8249/P8249 6- 32 CPIJNE — Compare, Increment, and Jump on Non-Equal CPIJNE dst,src,RA Operation: If dst – src "0", PC ← PC + RA Ir ← Ir + 1 The source operand is compared to (subtracted from) the destination operand.
S3C8245/P8245/C8249/P8249 INSTRUCTION S ET 6- 33 DA — Decimal Adjust DA dst Operation: dst ← DA dst The destination operand is adjusted to form two 4-bit BCD digits following an addition or subtraction operation. For addition (ADD, ADC) or subtraction (SUB, SBC), the following table indicates the operation performed.
INSTRUCTION SET S3C8245/ P8245/C8249/P8249 6- 34 DA — Decimal Adjust DA (Continued) Example: Given: Working register R0 contains the value 15 (BCD), working register R1 contains 27 (BCD), and addres.
S3C8245/P8245/C8249/P8249 INSTRUCTION S ET 6- 35 DEC — Decrement DEC dst Operation: dst ← dst – 1 The contents of the destination operand are decremented by one. Flags: C: Unaffected. Z: Set if the result is "0"; cleared otherwise. S: Set if result is negative; cleared otherwise.
INSTRUCTION SET S3C8245/ P8245/C8249/P8249 6- 36 DECW — Decrement Word DECW dst Operation: dst ← dst – 1 The contents of the destination location (whic h must be an even address) and the operand following that location are treated as a single 16-bit value that is decremented by one.
S3C8245/P8245/C8249/P8249 INSTRUCTION S ET 6- 37 DI — Disable Interrupts DI Operation: SYM (0) ← 0 Bit zero of the system mode control register, SYM.
INSTRUCTION SET S3C8245/ P8245/C8249/P8249 6- 38 DIV — Divide (Unsigned) DIV dst,src Operation: dst ÷ src dst (UPPER) ← REMAINDER dst (LOWER) ← QUOTIENT The destination operand (16 bits) i s divided by the source operand (8 bits). The quotient (8 bits) is stored in the lower half of the destination.
S3C8245/P8245/C8249/P8249 INSTRUCTION S ET 6- 39 DJNZ — Decrement and Jump if Non-Zero DJNZ r,dst Operation: r ← r – 1 If r ≠ 0, PC ← PC + dst The working register being used as a counter is decremented.
INSTRUCTION SET S3C8245/ P8245/C8249/P8249 6- 40 EI — Enable Interrupts EI Operation: SYM (0) ← 1 An EI instruction sets bit zero of the system mode register, SYM.0 to "1". This allows interrupts to be serviced as they occur (assuming they have highest priority).
S3C8245/P8245/C8249/P8249 INSTRUCTION S ET 6- 41 ENTER — Enter ENTER Operation: SP ← SP – 2 @SP ← IP IP ← PC PC ← @IP IP ← IP + 2 This instruction is useful when implementing threaded-code languages. The contents of the instruction pointer are pushed to the stack.
INSTRUCTION SET S3C8245/ P8245/C8249/P8249 6- 42 EXIT — Exit EXIT Operation: IP ← @SP SP ← SP + 2 PC ← @IP IP ← IP + 2 This instruction is useful when imple menting threaded-code languages. The stack value is popped and loaded into the instruction pointer.
S3C8245/P8245/C8249/P8249 INSTRUCTION S ET 6- 43 IDLE — Idle Operation IDLE Operation: The IDLE instruction stops the CPU clock while allowing system clock oscillation to continue. Idle mode can be released by an interrupt request (IRQ) or an external reset operation.
INSTRUCTION SET S3C8245/ P8245/C8249/P8249 6- 44 INC — Increment INC dst Operation: dst ← dst + 1 The contents of the destination operand are incremented by one. Flags: C: Unaffected. Z: Set if the result is "0"; cleared otherwise. S: Set if the result is negative; cleared otherwise.
S3C8245/P8245/C8249/P8249 INSTRUCTION S ET 6- 45 INCW — Increment Word INCW dst Operation: dst ← dst + 1 The contents of the destination (which must be an even address) and the byte following that location are treated as a single 16-bit value that is incremented by one.
INSTRUCTION SET S3C8245/ P8245/C8249/P8249 6- 46 IRET — Interrupt Return IRET IRET (Normal) IRET (Fast) Operation: FLAGS ← @SP PC ↔ IP SP ← SP + 1 FLAGS ← FLAGS' PC ← @SP FIS ← 0 SP ← SP + 2 SYM(0) ← 1 This instruction is used at the end of an interrupt service routine.
S3C8245/P8245/C8249/P8249 INSTRUCTION S ET 6- 47 JP — Jump JP cc,dst (Conditional) JP dst (Unconditional) Operation: If cc is true, PC ← dst The conditional JUMP instruction transfers program cont.
INSTRUCTION SET S3C8245/ P8245/C8249/P8249 6- 48 JR — Jump Relative JR cc,dst Operation: If cc is true, PC ← PC + dst If the condition specified by the condition code (cc) is true, the relative ad.
S3C8245/P8245/C8249/P8249 INSTRUCTION S ET 6- 49 LD — Load LD dst,src Operation: dst ← src The contents of the source are loaded into the destination.
INSTRUCTION SET S3C8245/ P8245/C8249/P8249 6- 50 LD — Load LD (Continued) Examples: Given: R0 = 01H, R1 = 0AH, register 00H = 01H, register 01H = 20H, register 02H = 02H, LOOP = 30H, and register 3A.
S3C8245/P8245/C8249/P8249 INSTRUCTION S ET 6- 51 LDB — Load Bit LDB dst,src.b LDB dst.b,src Operation: dst(0) ← src(b) or dst(b) ← src(0) The specified bit of the source is loaded into bit zero (LSB) of the destination, or bit zero of the source is loaded into the specified bit of the destination.
INSTRUCTION SET S3C8245/ P8245/C8249/P8249 6- 52 LDC/LDE — Load Memory LDC/LDE dst,src Operation: dst ← src This instruction loads a byte from program or data memory into a working register or vice-versa. The source values are unaffected. LDC refers to program memory and LDE to data memory.
S3C8245/P8245/C8249/P8249 INSTRUCTION S ET 6- 53.
INSTRUCTION SET S3C8245/ P8245/C8249/P8249 6- 54 LDC/LDE — Load Memory LDC/LDE (Continued) Examples: Given: R0 = 11H, R1 = 34H, R2 = 01H, R3 = 04H; Program memory locations 0103H = 4FH, 0104H = 1A, 0105H = 6DH, and 1104H = 88H.
S3C8245/P8245/C8249/P8249 INSTRUCTION S ET 6- 55 LDCD/LDED — Load Memory and Decrement LDCD/LDED dst,src Operation: dst ← src rr ← rr – 1 These instructions are used for user stacks or block transfers of data from program or data memory to the register file.
INSTRUCTION SET S3C8245/ P8245/C8249/P8249 6- 56 LDCI/LDEI — Load Memory and Increment LDCI/LDEI dst,src Operation: dst ← src rr ← rr + 1 These instructions are used for user stacks or block transfers of data from program or data memory to the register file.
S3C8245/P8245/C8249/P8249 INSTRUCTION S ET 6- 57 LDCPD/LDEPD — Load Memory with Pre-Decrement LDCPD/ LDEPD dst,src Operation: rr ← rr – 1 dst ← src These instructions are used for block transfers of data from program or data memory from the register file.
INSTRUCTION SET S3C8245/ P8245/C8249/P8249 6- 58 LDCPI/LDEPI — Load Memory with Pre-Increment LDCPI/ LDEPI dst,src Operation: rr ← rr + 1 dst ← src These instructions are used for block transfers of data from program or data memory from the register file.
S3C8245/P8245/C8249/P8249 INSTRUCTION S ET 6- 59 LDW — Load Word LDW dst,src Operation: dst ← src The contents of the source (a word) are loaded into the destination.
INSTRUCTION SET S3C8245/ P8245/C8249/P8249 6- 60 MULT — Multiply (Unsigned) MULT dst,src Operation: dst ← dst × src The 8-bit destination operand (even register of the register pair) is multiplied by the source operand (8 bits) and the product (16 bits) is stored in the register pair specified by the destination address.
S3C8245/P8245/C8249/P8249 INSTRUCTION S ET 6- 61 NEXT — Next NEXT Operation: PC ← @ IP IP ← IP + 2 The NEXT instruction is useful when implementing threaded-code languages. The program memory word that is pointed to by the instruction pointer is loaded into the program counter.
INSTRUCTION SET S3C8245/ P8245/C8249/P8249 6- 62 NOP — No Operation NOP Operation: No action is performed when the CPU executes this instruction. Typically, one or more NOPs are executed in sequence in order to effect a timing delay of variable duration.
S3C8245/P8245/C8249/P8249 INSTRUCTION S ET 6- 63 OR — Logical OR OR dst,src Operation: dst ← dst OR src The source operand is logically ORed with the destination operand and the result is stored in the destination. The contents of the source are unaffected.
INSTRUCTION SET S3C8245/ P8245/C8249/P8249 6- 64 POP — Pop From Stack POP dst Operation: dst ← @SP SP ← SP + 1 The contents of the location addressed by the stack pointer are loaded into the destination. The stack pointer is then incremented by one.
S3C8245/P8245/C8249/P8249 INSTRUCTION S ET 6- 65 POPUD — Pop User Stack (Decrementing) POPUD dst,src Operation: dst ← src IR ← IR – 1 This instruction is used for user-defined stacks in the register file. The contents of the register file location addressed by the user stack pointer are loaded into the destination.
INSTRUCTION SET S3C8245/ P8245/C8249/P8249 6- 66 POPUI — Pop User Stack (Incrementing) POPUI dst,src Operation: dst ← src IR ← IR + 1 The POPUI instruction is used for user-defined stacks in the register file. The contents of the register file location addressed by the user stack pointer are loaded into the destination.
S3C8245/P8245/C8249/P8249 INSTRUCTION S ET 6- 67 PUSH — Push To Stack PUSH src Operation: SP ← SP – 1 @SP ← src A PUSH instruction decrements the stack pointer value and loads the contents of the source (src) into the location addressed by the decremented stack pointer.
INSTRUCTION SET S3C8245/ P8245/C8249/P8249 6- 68 PUSHUD — Push User Stack (Decrementing) PUSHUD dst,src Operation: IR ← IR – 1 dst ← src This instruction is used to address user-defined stacks in the register file.
S3C8245/P8245/C8249/P8249 INSTRUCTION S ET 6- 69 PUSHUI — Push User Stack (Incrementing) PUSHUI dst,src Operation: IR ← IR + 1 dst ← src This instruction is used for user-defined stacks in the register file.
INSTRUCTION SET S3C8245/ P8245/C8249/P8249 6- 70 RCF — Reset Carry Flag RCF RCF Operation: C ← 0 The carry flag is cleared to logic zero, regardless of its previous value.
S3C8245/P8245/C8249/P8249 INSTRUCTION S ET 6- 71 RET — Return RET Operation: PC ← @SP SP ← SP + 2 The RET instruction is normally used to return to the previously executing procedure at the end of a procedure entered by a CALL instruction. The contents of the location addressed by the stack pointer are popped into the program counter.
INSTRUCTION SET S3C8245/ P8245/C8249/P8249 6- 72 RL — Rotate Left RL dst Operation: C ← dst (7) dst (0) ← dst (7) dst (n + 1) ← dst (n), n = 0–6 The co ntents of the destination operand are rotated left one bit position. The initial value of bit 7 is moved to the bit zero (LSB) position and also replaces the carry flag.
S3C8245/P8245/C8249/P8249 INSTRUCTION S ET 6- 73 RLC — Rotate Left Through Carry RLC dst Operation: dst (0) ← C C ← dst (7) dst (n + 1) ← dst (n), n = 0–6 The contents of the destination operand with the carry flag are rotated left one bit position.
INSTRUCTION SET S3C8245/ P8245/C8249/P8249 6- 74 RR — Rotate Right RR dst Operation: C ← dst (0) dst (7) ← dst (0) dst (n ) ← dst (n + 1), n = 0–6 The contents of the destinat ion operand are rotated right one bit position. The initial value of bit zero (LSB) is moved to bit 7 (MSB) and also replaces the carry flag (C).
S3C8245/P8245/C8249/P8249 INSTRUCTION S ET 6- 75 RRC — Rotate Right Through Carry RRC dst Operation: dst (7) ← C C ← dst (0) dst (n) ← dst (n + 1), n = 0–6 The contents of the destination operand and the carry flag are rotated right one bit position.
INSTRUCTION SET S3C8245/ P8245/C8249/P8249 6- 76 SB0 — Select Bank 0 SB0 Operation: BANK ← 0 The SB0 instruction clears the bank address flag in the FLAGS register (FLAGS.0) to logic zero, selecting bank 0 register addressing in the set 1 area of the register file.
S3C8245/P8245/C8249/P8249 INSTRUCTION S ET 6- 77 SB1 — Select Bank 1 SB1 Operation: BANK ← 1 The SB1 instruction sets the bank address flag in the FLAGS register (FLAGS.0) to logic one, selecting bank 1 register addressing in the set 1 area of the register file.
INSTRUCTION SET S3C8245/ P8245/C8249/P8249 6- 78 SBC — Subtract with Carry SBC dst,src Operation: dst ← dst – src – c The source operand, along with the current value of the carry flag, is subtracted from the destination operand and the result is stored in the destination.
S3C8245/P8245/C8249/P8249 INSTRUCTION S ET 6- 79 SCF — Set Carry Flag SCF Operation: C ← 1 The carry flag (C) is set to logic one, regardless o f its previous value. Flags: C: Set to "1". No other flags are affected. Format: Bytes Cycles Opcode (Hex) opc 1 4 DF Example: The statement SCF sets the carry flag to logic one.
INSTRUCTION SET S3C8245/ P8245/C8249/P8249 6- 80 SRA — Shift Right Arithmetic SRA dst Operation: dst (7) ← dst (7) C ← dst (0) dst (n) ← dst (n + 1), n = 0–6 An arithmetic shift-right of one bit position is performed on the destination operand.
S3C8245/P8245/C8249/P8249 INSTRUCTION S ET 6- 81 SRP/SRP0/SRP1 — Set Register Pointer SRP src SRP0 src SRP1 src Operation: If src (1) = 1 and src (0) = 0 then: RP0 (3–7) ← src (3–7) If src (1).
INSTRUCTION SET S3C8245/ P8245/C8249/P8249 6- 82 STOP — Stop Operation STOP Operation: The STOP instruction stops the both the CPU clock and syste m clock and causes the microcontroller to enter Stop mode. During Stop mode, the contents of on-chip CPU registers, peripheral registers, and I/O port control and data registers are retained.
S3C8245/P8245/C8249/P8249 INSTRUCTION S ET 6- 83 SUB — Subtract SUB dst,src Operation: dst ← dst – src The source operand is subtracted from the destination operand and the result is stored in the destination. The contents of the source are unaffected.
INSTRUCTION SET S3C8245/ P8245/C8249/P8249 6- 84 SWAP — Swap Nibbles SWAP dst Operation: dst (0 – 3) ↔ dst (4 – 7) The contents of the lower four bits and upper four bits of the destination operand are swapped. 7 0 4 3 Flags: C: Undefined. Z: Set if the result is "0"; cleared otherwise.
S3C8245/P8245/C8249/P8249 INSTRUCTION S ET 6- 85 TCM — Test Complement Under Mask TCM dst,src Operation: (NOT dst) AND src This instruction tests selected bits in the destination operand for a logic one value. The bits to be tested are specified by setting a "1" bit in the corresponding position of the source operand (mask).
INSTRUCTION SET S3C8245/ P8245/C8249/P8249 6- 86 TM — Test Under Mask TM dst,src Operation: dst AND src This instruction tests selected bits in the destination operand for a logic zero value.
S3C8245/P8245/C8249/P8249 INSTRUCTION S ET 6- 87 WFI — Wait for Interrupt WFI Operation: The CPU is effectively halted until an interrupt oc curs, except that DMA transfers can still take place during this wait state. The WFI status can be released by an internal interrupt, including a fast interrupt .
INSTRUCTION SET S3C8245/ P8245/C8249/P8249 6- 88 XOR — Logical Exclusive OR XOR dst,src Operation: dst ← dst XOR src The so urce operand is logically exclusive-ORed with the destination operand and the result is stored in the destination.
S3C8245/P8245/C8249/P8249 CLOCK CIRCUIT 7- 1 7 CLOCK CIRCUIT OVERVIEW The clock frequency generated for the S3C8245/C8249 by an external crystal can range from 1 MHz to 10 MHz. The maximum CPU clock frequency is 10 MHz. The X IN and X OUT pins connect the external oscillator or clock source to the on-chip clock circuit.
CLOCK CIRCUIT S3C8245/P8245/C8249 /P8249 7- 2 C LOCK STATUS DURING POWER-DOWN MODES The two power-down modes, Stop mode and Idle mode, affect the system clock as follows: — In Stop mode, the main oscillator is halted.
S3C8245/P8245/C8249/P8249 CLOCK CIRCUIT 7- 3 SYSTEM CLOCK CONTROL REGISTER (CLKCON ) The system clock control register, CLKCON , is located in the bank 0 of set 1, address D4H.
CLOCK CIRCUIT S3C8245/P8245/C8249 /P8249 7- 4 Oscillator Control Register (OSCCON) F3H, Set 1, bank 0, R/W .7 .6 .5 .4 .3 .2 .1 .0 MSB LSB Not used System clock selection bit: 0 = Main oscillator sele.
S3C8245/P8245/C8249/P8249 n RESET and POWER-DOWN 8- 1 8 nRESET a nd POWER-DOWN SYSTEM n RESET OVERVIEW During a power-on reset, the voltage at V DD goes to High level and the n RESET pin is forced to Low level. The n RESET signal is input through a s chmitt trigger circuit where it is then synchronized with the CPU clock.
n RESET and POWER-DOWN S3C8245/P8245/C8249 /P8249 8- 2 HARDWARE n RESET VALUES Table 8-1 , 8-2, 8-3 list the reset values for CPU and system registers, peripheral control registers, and peripheral data registers following a reset operation.
S3C8245/P8245/C8249/P8249 n RESET and POWER-DOWN 8- 3 Table 8 - 2 . S3C8245/C8249 Set 1, Bank 0 Register Values after n RESET Register Name Mnemonic Address Bit Values a fter n RESET Dec Hex 76543210 .
n RESET and POWER-DOWN S3C8245/P8245/C8249 /P8249 8- 4 Table 8 - 3 . S3C8245/P8245 Set 1, Bank 1 Register Values after n RESET Register Name Mnemonic Address Bit Values a fter n RESET Dec Hex 76543210.
S3C8245/P8245/C8249/P8249 n RESET and POWER-DOWN 8- 5 POWER-DOWN MODES STOP MODE Stop mode is invoked by the instruction STOP (opcode 7FH). In Stop mode, the operation of the CPU and all peripherals is halted. That is, the on-chip main oscillator stops and the supply current is reduced to less than 3 µ A.
n RESET and POWER-DOWN S3C8245/P8245/C8249 /P8249 8- 6 IDLE MODE Idle mode is i nvoked by the instruction IDLE (opcode 6FH). In idle mode, CPU operations are halted while some peripherals remain active. During idle mode, the internal clock signal is gated away from the CPU, but all peripherals timers remain active.
S3C8245/P8245/C8249/P8249 I/O PORTS 9- 1 9 I/O PORTS OVERVIEW The S3C8245/C8249 microcontroller has two nibble-programmable and four bit-programmable I/O ports , P0–P5. The port 3 is a 5-bit port and the others are 8-bit ports. This gives a total of 45 I/O pins .
I/O PORTS S3C8245/P 8245/C8249/P8249 9- 2 PORT DATA REGISTERS Table 9-2 gives you an overview of t he register locations of all four S3C8245/C8249 I/O port data registers. Data registers for ports 0 , 1, 2, 3, 4, and 5 have the general format shown in Figure 9-1 .
S3C8245/P8245/C8249/P8249 I/O PORTS 9- 3 PORT 0 Port 0 is an 8-bit I/O Port that you can use two ways: — General-purpose I/O — External interrupt inputs for INT0–INT7 Port 0 is accessed directly by writing or reading the port 0 data register, P0 at location F6H in set 1, bank 0.
I/O PORTS S3C8245/P 8245/C8249/P8249 9- 4 Port 0 Control Register, High Byte (P0CONH) E0H, Set 1, Bank 0, R/W .7 .6 .5 .4 .3 .2 .1 .0 MSB LSB P0.7 (INT7) P0.
S3C8245/P8245/C8249/P8249 I/O PORTS 9- 5 Port 0 Interrupt Control Register (P0INT) E2H, Set 1, Bank 0, R/W .7 .6 .5 .4 .3 .2 .1 .0 MSB LSB P0INT bit configuration settings: 0 1 Interrupt Disable INT7 INT6 INT5 INT4 INT3 INT2 INT1 INT0 Interrupt Enable Figure 9-3.
I/O PORTS S3C8245/P 8245/C8249/P8249 9- 6 PORT 1 Port 1 is an 8-bit I/O port with individually configurable pins. Port 1 pins are accessed directly by writing or reading the port 1 data register, P1 at location F7H in set 1, bank 0.
S3C8245/P8245/C8249/P8249 I/O PORTS 9- 7 Port 1 Control Register, Low Byte (P1CONL) E5H, Set 1, Bank 0, R/W .7 .6 .5 .4 .3 .2 .1 .0 MSB LSB P1.3 P1CONL bit-pair pin configuration settings: 00 01 10 11 Alternative function (T1OUT, T1PWM, other pins are push-pull are push-pull output mode) Output mode, push-pull P1.
I/O PORTS S3C8245/P 8245/C8249/P8249 9- 8 PORT 2 Port 2 is an 8-bit I/O port that can be used for general-purpose I/O as A/D converter inputs, ADC0–ADC7. The pins are accessed directly by writing or reading the port 2 data register, P2 at location F8H in set 1, bank 0.
S3C8245/P8245/C8249/P8249 I/O PORTS 9- 9 Port 2 Control Register,Low Byte (P2CONL) E7H, Set 1, Bank 0, R/W .7 .6 .5 .4 .3 .2 .1 .0 MSB LSB P2.2 (ADC2) P2.
I/O PORTS S3C8245/P 8245/C8249/P8249 9- 10 PORT 3 Port 3 is an 5-bit I/O port with individually configurable pins. Port 3 pins are accessed directly by writing or reading the port 3 data register, P3 at location F9H in set 1, bank 0.
S3C8245/P8245/C8249/P8249 I/O PORTS 9- 11 Port 3 Control Register, Low Byte (P3CONL) E9H, Set 1, Bank 0, R/W .7 .6 .5 .4 .3 .2 .1 .0 MSB LSB P3.2/TACLK P3.1/TAOUT/ TAPWM P3.0/TBPWM P3CONL bit-pair pin configuration settings: 00 01 10 11 Alternative function (TAOUT,TAPWM, TBPWM P3.
I/O PORTS S3C8245/P 8245/C8249/P8249 9- 12 PORT 4 Port 4 is an 8-bit I/O port with individually configurable pins. Port 4 pins are accessed directly by writing or reading the port 4 data register, P4 at location FAH in set 1, bank 0. P4.0–P4.7 can serve as inputs (with or without pull- ups), as output (open drain or push-pull).
S3C8245/P8245/C8249/P8249 I/O PORTS 9- 13 Port 4 Control Register, Low Byte (P4CONL) EDH, Set 1, Bank 1, R/W .7 .6 .5 .4 .3 .2 .1 .0 MSB LSB P4.2/SEG18 P4.1/SEG17 P4.0/SEG16 P4CONL bit-pair pin configuration settings: 00 01 10 11 Output mode, push-pull Input mode, pull-up P4.
I/O PORTS S3C8245/P 8245/C8249/P8249 9- 14 PORT 5 Port 5 is an 8-bit I/O port with individually configurable pins. Port 5 pins are accessed directly by writing or reading the port 5 data register, P5 at location FBH in set 1, bank 0. P5.0–P5.7 can serve as inputs (with without pull-ups), as output (open drain or push-pull).
S3C8245/P8245/C8249/P8249 I/O PORTS 9- 15 Output mode, push-pull Port 5 Control Register, Low Byte (P5CONL) EFH, Set 1, Bank 1, R/W .7 .6 .5 .4 .3 .2 .1 .0 MSB LSB P5.2/SEG26 P5.1/SEG25 P5.0/SEG24 P5CONL bit-pair pin configuration settings: 00 01 10 11 Input mode, pull-up P5.
I/O PORTS S3C8245/P 8245/C8249/P8249 9- 16 NOTES.
S3C8245/P8245/C8249/P8249 BASIC TIMER 10- 1 10 BASIC TIMER OVERVIEW S3C8245/C8249 has an 8-bit basic timer . BASIC TIMER (BT) You can use the basic timer (BT) in two different ways: — As a watchdog .
BASIC TIMER S3C8245/P8245/C824 9/P8249 10- 2 Basic TImer Control Register (BTCON) D3H, Set 1, R/W .7 .6 .5 .4 .3 .2 .1 .0 MSB LSB Divider clear bit: 0 = No effect 1= Clear dvider Basic timer counter c.
S3C8245/P8245/C8249/P8249 BASIC TIMER 10- 3 BASIC TIMER FUNCTION DESCRIPTION Watchdog Timer Function You can program the basic timer overflow signal (BTOVF) to generate a reset by setting BTCON.7–BTCON.4 to any value other than " 1010B " .
BASIC TIMER S3C8245/P8245/C824 9/P8249 10- 4 NOTE: During a power-on reset operation, the CPU is idle during the required oscillation stabilization interval (until bit 4 of the basic timer counter overflows).
S3C8245/P8245/C8249/P8249 8-BIT TIMER A /B 11- 1 11 8-BIT TIMER A/B 8-BIT TIMER A OVERVIEW The 8-bit timer A is an 8-bit general-purpose timer/counter.
8-BIT TIMER A/B S3 C8245/P8245/C8249/P8249 11- 2 FUNCTION DESCRIPTION Timer A Interrupts (IRQ0, Vectors E0H and E2H) The timer A module can generate two interrupts: the timer A overflow interrupt (TAOVF), and the timer A match/ capture interrupt (TAINT).
S3C8245/P8245/C8249/P8249 8-BIT TIMER A /B 11- 3 TIMER A CONTROL REGISTER (TACON) You use the timer A control register, TACON, to — Select the timer A operating mode (interval timer, capture mode, o.
8-BIT TIMER A/B S3 C8245/P8245/C8249/P8249 11- 4 BLOCK DIAGRAM Timer A Data Register (Read/Write) Timer A Buffer Reg 8-bit Comparator 8-bit Up-Counter (Read Only) Clear Match TACON.7-.6 f XX /1024 f XX /256 f XX /64 TACLK TACON.2 Pending TACON.3 M U X Overflow TAOVF M U X M U X TACAP TAINT TACON.
S3C8245/P8245/C8249/P8249 8-BIT TIMER A /B 11- 5 8-BIT TIMER B OVERVIEW The S3C8245/C8249 micro-controller has an 8-bit counter called timer B. Timer B, which can be used to generate the carrier frequency of a remote controller signal. Pending condition of timer B is cleared automatically by hardware.
8-BIT TIMER A/B S3C 8245/P8245/C8249/P8249 11- 6 Timer B Control Register (TBCON) ECH, Set 1, Bank 0, R/W .7 .6 .5 .4 .3 .2 .1 .0 MSB LSB Timer B mode selection bit: 0 = One-shot mode 1 = Repeating mo.
S3C8245/P8245/C8249/P8249 8-BIT TIMER A/B 11- 7 TIMER B PULSE WIDTH CALCULATIONS t LOW t HIGH t LOW To generate the above repeated waveform consisted of low period time, t LOW , and high period time, t HIGH . When TBOF = 0, t LOW = (TBDATAL + 2) x 1/fx, 0H < TBDATAL < 100H, where fx = The selected clock.
8-BIT TIMER A/B S3C 8245/P8245/C8249/P8249 11- 8 Timer B Clock 0H TBOF = '0' TBDATAL = 01-FFH TBDATAH = 00H TBOF = '0' TBDATAL = 00H TBDATAH = 01-FFH TBOF = '0' TBDATAL =.
S3C8245/P8245/C8249/P8249 8-BIT TIMER A/B 11- 9 F PROGRAMMING TIP — To generate 38 kHz, 1/3duty signal through P3.0 This example sets Timer B to the repeat mode, sets the oscillation frequency as the Timer B clock source, and TBDATAH and TBDATAL to make a 38 kHz,1/3 Duty carrier frequency.
8-BIT TIMER A/B S3C 8245/P8245/C8249/P8249 11- 10 F PROGRAMMING TIP — To generate a one pulse signal through P3.0 This example sets Timer B to the one shot mode, sets the oscillation frequency as the Timer B clock source, and TBDATAH and TBDATAL to make a 40 µ s width pulse.
S3C8245/P8245/C8249/P8249 16-BIT TIMER 0/1 12- 1 12 16-BIT TIMER 0/ 1 16-BIT TIMER 0 OVERVIEW The 16-bit timer 0 is an 16-bit general-purpose timer. Timer 0 has the interval timer mode by using the appropriate T0CON setting.
16-BIT TIMER 0/1 S 3C8245/P8245/C8249/P8249 12- 2 TIMER 0 CONTROL REGISTER (T0CON) You use the timer 0 control register, T0CON, to — Enable the timer 0 operating (interval timer) — Select the time.
S3C8245/P8245/C8249/P8249 16-BIT TIMER 0/1 12- 3 BLOCK DIAGRAM Timer 0 Data H/L Reg (Read/Write) Timer 0 Buffer Reg 16-bit Comparator 16-bit up-Counter H/L (Read Only) Match Bit 3 T0INT Counter clear signal (T0CON.3) Bits 7, 6, 5 M U X fxx/256 fxx/64 fxx/8 fxx/1 TBOF Bit 2 Clear Bit 0 Bit 1 IRQ2 Pending R Data Bus 8 Data Bus 8 NOTES: 1.
16-BIT TIMER 0/1 S 3C8245/P8245/C8249/P8249 12- 4 Timer 0 Counter Register, High-Byte (T0CNTH) F2H, Set 1, Bank 1, R .7 .6 .5 .4 .3 .2 .1 .0 MSB LSB Reset Value: 00H Timer 0 Counter Register, Low-Byte (T0CNTL) F3H, Set 1, Bank 1, R .7 .6 .5 .4 .3 .2 .
S3C8245/P8245/C8249/P8249 16-BIT TIMER 0/1 12- 5 16-BIT TIMER 1 OVERVIEW The 16-bit timer 1 is an 16-bit general-purpose timer/counter. Timer 1 has three operating modes, one of which you select using.
16-BIT TIMER 0/1 S 3C8245/P8245/C8249/P8249 12- 6 FUNCTION DESCRIPTION Timer 1 Interrupts (IRQ3, Vectors E8H and EAH) The timer 1 module can generate two interrupts, the timer 1 overflow interrupt (T1OVF), and the timer 1 match/capture interrupt (T1INT).
S3C8245/P8245/C8249/P8249 16-BIT TIMER 0/1 12- 7 TIMER 1 CONTROL REGISTER (T1CON) You use the timer 1 control register, T1CON, to — Select the timer 1 operating mode (interval timer, capture mode, o.
16-BIT TIMER 0/1 S 3C8245/P8245/C8249/P8249 12- 8 BLOCK DIAGRAM Timer 1 Data H/L Register Timer 1 Buffer Reg 16-bit Comparator 16-bit Up-Counter (Read Only) Counter Clear Signal or Match Clear Match T1CON.7-5 f XX /1024 f XX /8 f XX /256 f XX /64 f XX /1 T1OVF IRQ3 T1CON.
S3C8245/P8245/C8249/P8249 16-BIT TIMER 0/1 12- 9 Timer 1 Counter Register, High-Byte (T1CNTH) FCH, Set 1, Bank 1, R MSB LSB Reset Value: 00H MSB .7 .6 .5 .4 .3 .2 .1 .0 .7 .6 .5 .4 .3 .2 .1 .0 LSB Timer 1 Counter Register, Low-Byte (T1CNTL) FDH, Set 1, Bank 1, R Reset Value: 00H Figure 12-7.
16-BIT TIMER 0/1 S 3C8245/P8245/C8249/P8249 12- 10 NOTES.
S3C8245/P8245/C8249/P8249 WATCH TIMER 13- 1 13 WATCH TIMER OVERVIEW Watch timer functions include real-time and watch-time measurement and interval timing for the system clock. To start watch timer operation, set bit1 and bit 6 of the watch timer mode register, WTCON.
WATCH TIMER S3C8245 /P8245/C8249/P8249 13- 2 WATCH TIMER CONTROL REGISTER (WTCON: R/W) FBH WTCON.7 WTCON.6 WTCON.5 WTCON.4 WTCON.3 WTCON.2 WTCON.1 WTCON.0 nRESET "0" "0" "0" "0" "0" "0" "0" "0" Table 13-1.
S3C8245/P8245/C8249/P8249 WATCH TIMER 13- 3 WATCH TIMER CIRCUIT DIAGRAM WTCON.1 WTCON.2 WTCON.3 WTCON.4 WTCON.5 Enable/Disable Selector Circuit MUX WTCON.0 WTINT WTCON.6 BUZZER Output f W /2 14 f W /2 13 f W /2 12 f W /2 6 f W /64 (0.5 kHz) f W /32 (1 kHz) f W /16 (2 kHz) f W /8 (4 kHz) 1 Hz f xx = Main System Clock (4.
WATCH TIMER S3C8245 /P8245/C8249/P8249 13- 4 NOTES.
S3C8245/P8245/C8249/P8249 LCD CONTROLL ER/DRIVER 14- 1 14 LCD CONTROLLER/DRIVER OVERVIEW The S3C8245/C8249 micro-controller can directly drive an up-to-16-digit (32-segment) LCD panel.
LCD CONTROLLER/DRIVER S3C8245/P8245/C8249 /P8249 14- 2 LCD CIRCUIT DIAGRAM COM2 COM0 COM3 LMOD LCON Timing Controller 05H.1 05H.0 04H.7 04H.6 00H.3 00H.
S3C8245/P8245/C8249/P8249 LCD CONTROLLE R/DRIVER 14- 3 LCD RAM ADDRESS AREA RAM addresses 00H - 0FH of page 4, or page 2, according to ROM size, are used as LCD data memory. When the bit value of a display segment is "1", the LCD display is turned on; when the bit value is "0", the display is turned off.
LCD CONTROLLER/DRIVER S3C8245/P8245/C8249 /P8249 14- 4 LCD CONTROL REGISTER (LCON), D0H Table 14-1. LCD Control Register (LCON) Organization LCON Bit Setting Description LCON.7 0 P5.4–P5.7 I/O is selected 1 SEG28–SEG31 is selected, P5.4–P5.7 I/O is disabled LCON.
S3C8245/P8245/C8249/P8249 LCD CONTROLLE R/DRIVER 14- 5 LCD MODE REGISTER (LMOD) The LCD mode control register LMOD is mapped to RAM addresses D1H. LMOD controls these LCD functions: — Duty and bias selection (LMOD.3–LMOD.0) — LCDCK clock frequency selection (LMOD.
LCD CONTROLLER/DRIVER S3C8245/P8245/C8249 /P8249 14- 6 Table 14-4. LCD Mode Control Register (LMOD) Organization, D1H LMOD.7 Always logic zero. LMOD.6 Always logic zero. LMOD.5 LMOD.4 LCD Clock (LCDCK) Frequency 0 0 32.768 kHz watch timer clock (fw)/2 9 = 64 Hz 0 1 32.
S3C8245/P8245/C8249/P8249 LCD CONTROLLE R/DRIVER 14- 7 LCD DRIVE VOLTAGE The LCD display is turned on only when the voltage difference between the common and segment signals is greater than V LCD . The LCD display is turned off when the difference between the common and segment signal voltages is less than V LCD.
LCD CONTROLLER/DRIVER S3C8245/P8245/C8249 /P8249 14- 8 FR Select Non-Select 1 Frame COM V LC1, 2 V LC 0 V ss SEG V ss COM-SEG V ss -V LC 0 -V LC1, 2 V LC1, 2 V LC 0 V LC1, 2 V LC 0 Figure 14-5.
S3C8245/P8245/C8249/P8249 LCD CONTROLLE R/DRIVER 14- 9 FR 1 Frame COM0 COM1 SEG0 SEG1 COM0 -SEG0 COM0 -SEG1 COM1 -SEG0 COM1 -SEG1 0 1 0 1 NOTE: V LC1 = V LC0 SEG1 SEG2 SEG3 SEG0 SEG3.1 x C1 .0 .1 .2 .3 1 0 X X 1 1 X X .4 .5 .6 .7 0 1 X X .0 .1 .2 .3 1 0 X X .
LCD CONTROLLER/DRIVER S3C8245/P8245/C8249 /P8249 14- 10 COM0 COM1 SEG0 SEG1 COM0 -SEG0 COM0 -SEG1 COM1 -SEG0 COM1 -SEG1 COM2 V LC2 V SS V LC1 V LC0 V LC2 V SS V LC1 V LC0 V LC2 V SS V LC1 V LC0 V LC2 V SS V LC1 V LC0 V LC2 V SS V LC1 V LC0 FR 1 Frame 0 1 2 0 1 2 SEG1.
S3C8245/P8245/C8249/P8249 LCD CONTROLLE R/DRIVER 14- 11 1 Frame 0 1 2 3 1 2 V LC2 V SS V LC1 V LC0 V LC2 V SS V LC1 V LC0 COM0 COM1 COM3 SEG0 COM0 -SEG0 COM0 -SEG1 COM1 -SEG1 COM2 FR 0 3 V LC2 V SS V .
LCD CONTROLLER/DRIVER S3C8245/P8245/C8249 /P8249 14- 12 LCD VOLTAGE DRIVING METHOD By Voltage Booster For run the voltage booster — Make enable the watch timer for f booster — Set LCON.2 to "0" and LCON.1 to "1" for make enable voltage booster — Recommendable capacitance value is 0.
S3C8245/P8245/C8249/P8249 A/D CONVERTER 15- 1 15 10-BIT ANALOG-TO-DIGITAL CONVERTER OVERVIEW The 10-bit A/D converter (ADC) module uses successive approximation logic to convert analog levels entering at one of the eight input channels to equivalent 10 -bit digital values.
A/D CONVERTER S3C8 245/P8245/C8249/P8249 15- 2 CONVERSION TIMING The A/D conversion process requires 4 steps (4 clock edges) to convert each bit and 10 clocks to set-up A/D conversion.
S3C8245/P8245/C8249/P8249 A/D CONVERTER 15- 3 A/D Converter Data Register, High Byte (ADDATAH) F8H, Set 1, Bank 1, Read Only .7 .6 .5 .4 .3 .2 .1 .0 MSB LSB A/D Converter Data Register, Low Byte (ADDATAL) F9H, Set 1, Bank 1, Read Only .1 .0 MSB LSB Figure 15-2.
A/D CONVERTER S3C8 245/P8245/C8249/P8249 15- 4 BLOCK DIAGRAM Input Pins ADC0-ADC7 (P2.0-P2.7) Clock Selector Conversion Result (ADDATAH/L F8, F9H, Set 1, Bank 1) - + Upper 8-bit is loaded to A/D Conversion Data Register To ADCON.
S3C8245/P8245/C8249/P8249 A/D CONVERTER 15- 5 NOTE: The symbol "R" signifies an offset resistor with a value of from 50 Ω to 100 Ω . If this resistor is omitted, the absolute accuracy will be maximum of 3 LSBs. V SS S3C8245/C8249 ADC0-ADC7 AV REF Reference Voltage Input Analog Input Pin R V DD V DD 10 pF 103 C 101 C + - Figure 15-4.
A/D CONVERTER S3C8 245/P8245/C8249/P8249 15- 6 NOTES.
S3C8245/P8245/C8249/P8249 SERIAL I/O INTERFACE 1 6- 1 16 SERIAL I/O INTERFACE OVERVIEW Serial I/O module, SIO can interface with various types of external device that require serial data transfer.
SERIAL I/O INTERFACE S3C8245/P8245/C824 9/P8249 1 6- 2 SIO CONTROL REGISTER (SIOCON) The control register for serial I/O interface module, SIOCON, is located at F0H in set 1, bank 0.
S3C8245/P8245/C8249/P8249 SERIAL I/O INTERFACE 1 6- 3 SIO PRE-SCALER REGISTER (SIOPS) The control register for serial I/O interface module, SIOPS, is located at F2H in set 1, bank 0.
SERIAL I/O INTERFACE S3C8245/P8245/C824 9/P8249 1 6- 4 SERIAL I/O TIMING DIAGRAM SO Transmit Complete IRQS Set SIOCON.3 DO7 DO6 DO5 DO4 DO3 DO2 DO1 DO0 DI7 DI6 DI5 DI4 DI3 DI2 DI1 DI0 SI SCK Figure 16-4 . Serial I/O Timing in Transmit/Receive Mode (Tx at falling, SIOCON.
S3C8245/P8245/C8249/P8249 VOLTAGE BOOST ER 17- 1 17 VOLTAGE BOOSTER OVERVIEW This voltage booster works for the power control of LCD : generates 3 × V R (V LC2 ), 2 × V R (V LC1 ), 1 × V R (V LC0 ). This voltage booster allows low voltage operation of LCD display with high quality.
VOLTAGE BOOSTER S3C8245/P8245/C8249/P8249 17- 2 BLOCK DIAGRAM V DD Clock LCON.0 LCON.2 Voltage Regulator V SS V LC0 (V R ) CAB CAB V LC1 (2 x V R ) V LC2 (3 x V R ) C0 C1 C2 LCON.1 Figure 17-1. Voltage Booster Block Diagram LCD Drive V LC1 V LC2 Voltage Booster V LC2 Voltage Regulator (1.
S3C8245/P8245/C8249/P8249 VOLTAGE LEVEL DETEC TOR 18 - 1 18 VOLTAGE LEVEL DETECTOR OVERVIEW The S3C8245/C8249 micro-controller has a built-in VLD (Voltage Level Detector) circuit which allows detection of power voltage drop or external input level through software.
VOLTAGE LEVEL DETECTOR S3C8245/P8245/C8249/P8249 18 - 2 VOLTAGE LEVEL DETECTOR CONTROL REGISTER (VLDCON) The bit 2 of VLDCON controls to run or disable the operation of Voltage level detect. Basically this V VLD is set as 2.2 V by system reset and it can be changed in 4 kinds voltages by selecting Voltage Level Detect Control register (VLDCON).
S3C8245/P8245/C8249/P8249 ELECTRICAL DA TA 19- 1 19 ELECTRICAL DATA OVERVIEW In this chapter, S3C8245/C8249 electrical characteristics are presented in tables and graphs. The information is arranged in the following order: — Absolute maximum ratings — Input/output capacitance — D.
ELECTRICAL DATA S3C 8245/P8245/C8249/P8249 19- 2 Table 19-1. Absolute Maximum Ratings (T A = 25 ° C) Parameter Symbol Conditions Rating Unit Supply voltage V DD – 0.3 to +6.5 V Input voltage V I – 0.3 to V DD + 0.3 Output voltage V O – 0.3 to V DD + 0.
S3C8245/P8245/C8249/P8249 ELECTRICAL DA TA 19- 3 Table 19-2. D.C. Electrical Characteristics (Continued) (T A = -25 ° C to + 85 ° C, V DD = 1.8 V to 5.5 V) Parameter Symbol Conditions Min Typ Max Unit Output high voltage V OH V DD = 5 V; I OH = -1 mA All output pins V DD –1.
ELECTRICAL DATA S3C 8245/P8245/C8249/P8249 19- 4 NOTE: Low leakage current is absolute value..
S3C8245/P8245/C8249/P8249 ELECTRICAL DA TA 19- 5 Table 19-2. D.C. Electrical Characteristics (Concluded) (T A = -25 ° C to + 85 ° C, V DD = 1.8 V to 5.
ELECTRICAL DATA S3C 8245/P8245/C8249/P8249 19- 6 In case of S3C8245, the characteristic of V OH and V OL is differ with the characteristic of S3C8249 like as following. Other characteristics are same each other. Table 19-3. D.C Electrical Characteristics of S3C8245 (T A = -25 ° C to +85 ° C, V DD = 1.
S3C8245/P8245/C8249/P8249 ELECTRICAL DA TA 19- 7 Table 19-4. A.C. Electrical Characteristics (T A = -25 ° C to +85 ° C, V DD = 1.8 V to 5.5 V) Parameter Symbol Conditions Min Typ Max Unit Interrupt input high, low width (P0.0–P0.7) tINTH, tINTL P0.
ELECTRICAL DATA S3C 8245/P8245/C8249/P8249 19- 8 Table 19-5. Input/Output Capacitance (T A = -25 ° C to +85 ° C, V DD = 0 V ) Parameter Symbol Conditions Min Typ Max Unit Input capacitance C IN f = 1 MHz; unmeasured pins are returned to V SS – – 10 pF Output capacitance C OUT I/O capacitance C IO Table 19-6.
S3C8245/P8245/C8249/P8249 ELECTRICAL DA TA 19- 9 Execution of STOP Instruction ~ ~ V DDDR ~ ~ Stop Mode Idle Mode Data Retention Mode t WAIT V DD Interrupt Normal Operating Mode Oscillation Stabilization Time 0.2 V DD NOTE: t WAIT is the same as 16 x BT clock.
ELECTRICAL DATA S3C 8245/P8245/C8249/P8249 19- 10 Table 19-7. A/D Converter Electrical Characteristics (T A = -25 ° C to +85 ° C, V DD = 2.7 V to 5.5 V, V SS = 0 V) Parameter Symbol Conditions Min Typ Max Unit Resolution – 10 – bit Total accuracy V DD = 5.
S3C8245/P8245/C8249/P8249 ELECTRICAL DA TA 19- 11 Table 19-8. Voltage Booster Electrical Characteristics (T A = 25 ° C, V DD = 2.0 V to 5.5 V, V SS = 0 V) Parameter Symbol Test Conditions Min Typ Max Unit Operating Voltage VDD 2.0 – 5.5 V Regulated Voltage V LC0 I LC0 = 5 uA (1/3 bias) 0.
ELECTRICAL DATA S3C 8245/P8245/C8249/P8249 19- 12 Table 19-10. Synchronous SIO Electrical Characteristics (T A = -25 ° C to +85 ° C, V DD = 1.8 V to 5.
S3C8245/P8245/C8249/P8249 ELECTRICAL DA TA 19- 13 Table 19-11. Main Oscillator Frequency (f OSC1 ) (T A = -25 ° C to +85 ° C, V DD = 1.8 V to 5.5 V) Oscillator Clock Circuit Test Condition Min Typ M.
ELECTRICAL DATA S3C 8245/P8245/C8249/P8249 19- 14 X IN , XT IN 1/fosc1, 1/fosc2 0.1V t XL , t XTL t XH , t XTH V DD - 0.1V Figure 19-7. Clock Timing Measurement at X IN Table 19-13. Sub Oscillator Frequency (f OSC2 ) (T A = -25 ° C + 85 ° C, V DD = 1.
S3C8245/P8245/C8249/P8249 ELECTRICAL DA TA 19- 15 Table 19-14. Sub Oscillator(crystal) Stabilization Time (t ST2 ) (T A = 25 ° C) Oscillator Test Condition Min Typ Max Unit Crystal Normal mode V DD =4.5V to 5.5V –12 sec V DD =2.0V to 4.5V – – 10 sec Crystal Strong mode V DD =3.
ELECTRICAL DATA S3C 8245/P8245/C8249/P8249 19- 16 NOTES.
S3C8245/P8245/C8249/P8249 MECHANICAL DATA 20 - 1 20 MECHANICAL DATA OVERVIEW The S3C8245/C8249 micr ocontroller is currently available in 80 -pin -QFP/TQFP package. 80-QFP-1420C #80 20.00 ± 0.20 23.90 ± 0.30 14.00 ± 0.20 17.90 ± 0.30 #1 0.80 0.35 + 0.
MECHANICAL DATA S3C8245/P8245/C824 9/P8249 20 - 2 80-TQFP-1212 #80 12.00 BSC 14.00 BSC 12.00 BSC 14.00 BSC 0.09-0.20 0-7 NOTE : Dimensions are in millimeters.
S3C8245/P8245/C8249/P8249 S3P8245/P8249 OTP 21- 1 21 S3P8245/P8249 OTP OVERVIEW The S3P8245/P8249 single-chip CMOS microcontroller is the OTP (One Time Programmable) version of the S3C8245/C8249 microcontroller. It has an on-chip OTP ROM instead of a masked ROM.
S3P8245/P8249 OTP S3 C8245/P8245/C8249/P8249 21- 2 SEG25/P5.1 SEG24/P5.0 SEG23/P4.7 SEG22/P4.6 SEG21/P4.5 SEG20/P4.4 SEG19/P4.3 SEG18/P4.2 SEG17/P4.1 SEG16/P4.0 SEG15 SEG14 SEG13 SEG12 SEG11 SEG10 P0.5/INT5 P0.6/INT6 P0.7/INT7 P1.0/T1CAP P1.1/T1CLK P1.
S3C8245/P8245/C8249/P8249 S3P8245/P8249 OTP 21- 3 Table 21-1. Descriptions of Pins Used to Read/Write the EPROM Main Chip During Programming Pin Name Pin Name Pin No. I/O Function P3.3 SDAT 10 I/O Serial data pin. Output port when reading and input port when writing.
S3P8245/P8249 OTP S3 C8245/P8245/C8249/P8249 21- 4 OPERATING MODE CHARACTERISTICS When 12.5 V is supplied to the V PP (TEST) pin of the S3P8245/P8249, the EPROM programming mode is entered. The operating mode (read, write, or read protection) is selected according to the input signals to the pins listed in Table 21-3 below.
S3C8245/P8245/C8249/P8249 S3P8245/P8249 OTP 21- 5 Table 21-4. D.C. Electrical Characteristics (Continued) (T A = -25 ° C to +85 ° C, V DD = 1.8 V to 5.
S3P8245/P8249 OTP S3 C8245/P8245/C8249/P8249 21- 6 Table 21-4. D.C. Electrical Characteristics (Concluded) (T A = -25 ° C to + 85 ° C, V DD = 1.8 V to 5.
S3C8245/P8245/C8249/P8249 S3P8245/P8249 OTP 21- 7 Case of S3P8245, the characteristic of V OH and V OL is differ with the characteristic of S3P8249 like as bellow. Other characteristics are same each other. Table 21-5. D.C Electrical Characteristics of S3C8245 (T A = -25 ° C to +85 ° C, V DD = 1.
S3P8245/P8249 OTP S3 C8245/P8245/C8249/P8249 21- 8 NOTES.
S3C8245/P8245/C8249/P8249 D EVELOPMENT TOOLS 22- 1 22 DEVELOPMENT TOOLS OVERVIEW Samsung provides a powerful and easy-to-use development support system in turnkey form. The development support system is configured with a host system, debugging tools, and support software.
DEVELOPMENT TOOLS S3C8245/P8245/C824 9/P8249 22- 2 BUS SMDS2+ RS-232C POD Probe Adapter PROM/OTP Writer Unit RAM Break/Display Unit Trace/Timer Unit SAM8 Base Unit Power Supply Unit IBM-PC AT or Compatible TB8249 Target Board EVA Chip Target Application System Figure 22-1.
S3C8245/P8245/C8249/P8249 D EVELOPMENT TOOLS 22- 3 TB8245/9 TARGET BOARD The TB8245/9 target board is used for the S3C8245/C8249 microcontroller. It is supported with the SMDS2+.
DEVELOPMENT TOOLS S3C8245/P8245/C824 9/P8249 22- 4 Table 22-1. Power Selection Settings for TB8245/9 " To User_Vcc " S ettings Operating Mode Comments To User_V CC Off On Target System SMDS2/SMDS2+ TB8245 TB8249 V CC V SS V CC The SMDS2 /SMDS2+ supplies V CC to the target board (evaluation chip) and the target system.
S3C8245/P8245/C8249/P8249 D EVELOPMENT TOOLS 22- 5 Table 22-3. Device Selection Settings for TB8245/9 " To User_Vcc " S ettings Operating Mode Comments Device Selection 8245 8249 Target Syst.
DEVELOPMENT TOOLS S3C8245/P8245/C824 9/P8249 22- 6 J101 SEG26/P5.2 SEG28/P5.4 SEG30/P5.6 P3.0/TBPWM P3.2/TACLK P3.4/SCLK V SS X IN XT IN nRESET P0.1/INT1 P0.3/INT3 P0.5/INT5 P0.7/INT7 P1.1/T1CLK P1.3 P1.5/SO P1.7/SI P2.1/ADC1 P2.3/ADC3 SEG27/P5.3 SEG29/P5.
Ein wichtiger Punkt beim Kauf des Geräts Samsung P8249 (oder sogar vor seinem Kauf) ist das durchlesen seiner Bedienungsanleitung. Dies sollten wir wegen ein paar einfacher Gründe machen:
Wenn Sie Samsung P8249 noch nicht gekauft haben, ist jetzt ein guter Moment, um sich mit den grundliegenden Daten des Produkts bekannt zu machen. Schauen Sie zuerst die ersten Seiten der Anleitung durch, die Sie oben finden. Dort finden Sie die wichtigsten technischen Daten für Samsung P8249 - auf diese Weise prüfen Sie, ob das Gerät Ihren Wünschen entspricht. Wenn Sie tiefer in die Benutzeranleitung von Samsung P8249 reinschauen, lernen Sie alle zugänglichen Produktfunktionen kennen, sowie erhalten Informationen über die Nutzung. Die Informationen, die Sie über Samsung P8249 erhalten, werden Ihnen bestimmt bei der Kaufentscheidung helfen.
Wenn Sie aber schon Samsung P8249 besitzen, und noch keine Gelegenheit dazu hatten, die Bedienungsanleitung zu lesen, sollten Sie es aufgrund der oben beschriebenen Gründe machen. Sie erfahren dann, ob Sie die zugänglichen Funktionen richtig genutzt haben, aber auch, ob Sie keine Fehler begangen haben, die den Nutzungszeitraum von Samsung P8249 verkürzen könnten.
Jedoch ist die eine der wichtigsten Rollen, die eine Bedienungsanleitung für den Nutzer spielt, die Hilfe bei der Lösung von Problemen mit Samsung P8249. Sie finden dort fast immer Troubleshooting, also die am häufigsten auftauchenden Störungen und Mängel bei Samsung P8249 gemeinsam mit Hinweisen bezüglich der Arten ihrer Lösung. Sogar wenn es Ihnen nicht gelingen sollte das Problem alleine zu bewältigen, die Anleitung zeigt Ihnen die weitere Vorgehensweise – den Kontakt zur Kundenberatung oder dem naheliegenden Service.