Benutzeranleitung / Produktwartung DSTni-EX des Produzenten Lantronix
Zur Seite of 95
Part Number 900-335 Revision A 3/04 DSTni-EX User Guide Section Five.
.
i Copyright & Trademark © 2003 Lantronix, Inc. All rights reserved. Lantronix and the Lantronix logo, and combinati ons thereof are registered trademarks of Lantronix, Inc. DSTni is a registered trademark of Lantronix, Inc. Ethernet is a registered trademark of Xerox Corporation.
ii Warranty Lantronix warrants each Lantronix product to be free from defects in material and workmanship for a period specified on the product warranty r egistration card after the date of shipment.
iii Contents Copyright & Trademark ________________________________________________________ i Warranty ___________________________________________________________________ ii Contents _____________.
iv Host Mode Op eration ________________________________________________________ 50 Sample Host M ode Operations ________________________________________________ 51 USB Pull-up/Pull-do wn Resistors___.
v Table 3-17. Clock C ontrol Regi ster ........................................................................................... 28 Table 3-18. Clock Control Register Defi nition s.....................................................................
vi Table 5-34. Tx/Rx Mess age Level R egister .............................................................................. 71 Table 5-35. Tx/Rx Message Le vel Register Definiti ons ............................................................. 71 Table 5-36.
1 1 1 : : A A b b o o u u t t T T h h i i s s U U s s e e r r G G u u i i d d e e This User Guide describes the technical feat ures and programming interfaces of the Lantronix DSTni-EX chip (hereafter referred to as “DSTni”).
2 Intended Audience This User Guide is intended for use by hardware and software engineers, programmers, and designers who understand the basic operating princi ples of microprocessors and their systems and are considering designing sy stems that utilize DSTni.
3 Organization This User Guide contains information essential for system architects and design engineers. The information in this User Guide is organized into the following chapters and appendixes.
4 2 2 : : S S P P I I C C o o n n t t r r o o l l l l e e r r This chapter describes the DSTni Serial Peripheral Interface (SPI) controller. Topics include: Theory of Operation on page 4 SPI C.
5 When operating as a slave, the SPI clock signal (SCLK) must be slower than 1/8th of the CPU clock (1/16th is recommended). Note: The SPI is fully synchronous to the CLK si gnal.
6 SPI Controller Register Definitions SPI_DATA Register SPI_DATA is the SPI Controller Data register. Table 2-2. SPI_DATA Register BIT 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 OFFSET B800 FIELD /// DATA[7:0] RESET 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RW RW RW R W RW RW RW RW RW RW RW RW RW RW RW RW RW Table 2-3.
7 CTL Register CTL is the SPI Controller Control register. Table 2-4. CTL Register BIT 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 OFFSET B802 FIELD /// IRQENB AUTODRV INVCS PHASE CKPOL WOR MSTN ALT RESET 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RW RW RW RW RW R W RW RW RW RW RW RW RW RW RW RW RW Table 2-5.
8 SPI_STAT Register To clear a bit in the SPI_STAT register, write a 1 to that bit. Table 2-6. SPI_STAT Register BIT 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 OFFSET B804 FIELD /// IRQ OVERRUN COL /// TXRUN SLVSEL RESET 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RW RW RW RW RW RW RW RW RW RW RW RW RW RW RW R R Table 2-7.
9 SPI_SSEL Register SPI_SSEL is the Slave Select Bit Count register. Table 2-8. SPI_SSEL Register BIT 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 OFFSET B806 FIELD /// BCNT[2:0] /// SELECTO RESET 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RW RW RW RW RW RW RW RW RW RW RW RW RW RW RW RW RW Table 2-9.
10 DVD_CNTR_LO Register DVD_CNTR_LO is the DVD Counter Low Byte register. Table 2-11. DVD_CNTR_LO Register BIT 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 OFFSET B808 FIELD /// DVDCNT[7:0] RESET 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RW RW RW RW RW RW RW RW RW RW RW RW RW RW RW RW RW Table 2-12.
11 3 3 : : I I 2 2 C C C C o o n n t t r r o o l l l l e e r r This chapter describes the DSTni I 2 C controller. Topics include: Features on page 11 Block Diagram on page 12 Theory of Ope.
12 Block Diagram Figure 3-1 shows a block diagram of the DSTni I 2 C controller. Figure 3-1. DSTni I 2 C Controller Block Diagram Theory of Operation I 2 C Background The I 2 C bus is a popular serial, two-wire interfac e used in many systems because of its low overhead.
13 I 2 C Controller The I 2 C controller base address is D000h and shares INT2 with the SPI controller. The I 2 C bus interface requires two bi-directional buffers with open collector (or open drain) outputs and Schmitt inputs.
14 Table 3-1. Master Transmit Status Codes Code I 2 C State Microprocessor Response Next I 2 C Action 18h Addr + W transmitted, ACK received 7-bit address: Write byte to DATA, clear IFLG OR Set STA, c.
15 Servicing the Interrupt After servicing this interrupt, and transmitting the second part of the address, the Status register contains one of the codes in Table 3-2. Note: If a repeated START condition transmits, the status code is 10h instead of 08h.
16 Transmitting Each Data Byte After each data byte transmits, the IFLG is set, and one of the three status codes in Table 3-3 is in the Status register.
17 Table 3-4. Master Receive Status Codes Code I 2 C State Microprocessor Response Next I 2 C Action 40h Addr + W transmitted, ACK received 7-bit address: Clear IFLG, AAK=0 OR Clear IFLG, AAK=1 10-bit.
18 Servicing the Interrupt After servicing this interrupt and transmitting the second part of the address, the Status register contains one of the codes in Table 3-5.
19 Receiving Each Data By te After receiving each data byte, the IFLG is set and one of three status codes in Table 3-6 is in the Status register. When all bytes are received, set the STP bit by writing a 1 to it in the Control register.
20 − The IFLG is set and the Status register contains B8h. − After the last transmission byte loads in the Data register, clear AAK when IFLG clears.
21 Bus Clock Considerations Bus Clock Speed The I 2 C bus can be defined for bus clock speeds up to 100 Kb/s and up to 400 Kb/s in fast mode. To detect START and STOP conditions on the bus, the M I 2 C must sample the I 2 C bus at least 10 times faster than the fastest master bus clock on the bus.
22 Resetting the I 2 C Controller There are two ways to reset the I 2 C controller. Using the RSTIN# pin Writing to the Software Reset register Using the RSTIN# pin reset method: Clears the Address, Extended Slave Address, Data, and Control registers to 00h.
23 I 2 C Controller Register Definitions Slave Address Register Table 3-8. Slave Address Register BIT 7 6 5 4 3 2 1 0 OFFSET D000 EXTENDED ADDRESS 1 1 1 1 0 SLAX9 SLAX8 General Call Address Enable FIELD SLA6 SLA5 SLA4 SLA3 SLA2 SLA1 SLA0 GCE RESET 0 0 0 0 0 0 0 0 RW RW RW RW RW RW RW RW RW Table 3-9.
24 Data Register The Data register contains the transmission data/slave address or the receipt data byte. In transmit mode, the byte is s ent most-significant bits first. In receive mode, the first bit received is plac ed in the register’s most-significant bits.
25 Control Register Table 3-12. Control Register BIT 7 6 5 4 3 2 1 0 OFFSET D004 FIELD IEN ENAB STA STP IFLG AAK /// /// RESET 0 0 0 0 0 0 0 0 RW RW RW RW RW RW RW RW RW Table 3-13. Control Register Definitions Bits Field Name Description 7 IEN Extended Slave A ddress l = interrupt line (INTR) goes HIGH when the IFLG bit is set.
26 Bits Field Name Description 2 AAK A cknowledge 1 = send Acknowledge (LOW level on SDA) during acknow ledge clock pulse on the I 2 C bus if: − The entire 7-bit slave address or the fi rst or second bytes of a 10-bit slave address are received. − The general call address is received and t he GCE bit in the ADDR register is set to one.
27 Table 3-15. Status Register Definitions Bits Field Name Description 7:3 STATUS CODE Status Code Five-bit status code. See Table 3-16. 2:0 /// Reserved Table 3-16.
28 Clock Control Register The Clock Control register is a Write Only regist er that contains seven least-significant bits. These least-significant bi ts control the frequency: At which the I 2 C bus is sampled. Of the I 2 C clock line (SCL) when the I 2 C controller is in master mode.
29 Extended Slave Address Register Table 3-19. Extended Slave Address Register BIT 7 6 5 4 3 2 1 0 OFFSET D008 FIELD SLAX7 SLAX6 SLAX5 SLAX4 SLAX3 SLAX2 SLAX 1 SLAX0 RESET 0 0 0 0 0 0 0 0 RW RW RW RW RW RW RW RW RW Table 3-20. Extended Slave Address Register Definitions Bits Field Name Description 7 SLAX7 Extended slave address.
30 4 4 : : U U S S B B C C o o n n t t r r o o l l l l e e r r This chapter describes the DSTni Universal Serial Bus (USB) controller. Topics include: Features on page 30 Theory of Operation o.
31 Theory of Operation USB Background USB is a serial bus operating at 12 Mb/s . USB provides an expandable, hot-pluggable Plug- and-Play serial interface that ensures a standard, low-cost socket for adding external peripheral devices. USB allows the connection of up to 127 devices.
32 Microprocessor Interface The USB microprocessor interface is made up of a slave interface and a master interface. The slave interface consists of a number of USB control and configuration registers. USB internal registers can be accessed usi ng a simple microprocessor interface.
33 Figure 4-1. Buffer Descriptor Table The microprocessor manages buffers intelligent ly for the USB by updating the BDT as necessary. This allows the USB to handle data transmission and reception efficiently while the microprocessor performs communication-ov erhead processing and other function-dependent applications.
34 Table 4-1. USB Data Direction Rx Tx Device OUT or SETUP IN Host IN OUT or SETUP Addressing BDT Entries Before describing how to access endpoint data via t he USB or microprocessor, it is important to understand the BDT addressing mechanism. The BD T occupies up to 256 bytes of system memory.
35 Table 4-4. BDT Data Used by USB Controller and Microprocessor USB Controller Determines… Microprocessor Determines… Who owns the buffer in sy stem memory Who ow ns the buffer in system memory D.
36 Table 4-6. USB Buffer Descriptor Format Definitions Bits Field Name Description 7 OWN BD Ow ner Specifies which unit has exclusive access to the BD.
37 USB Transaction When the USB transmits or receives data: 1. The USB uses the address generation in Table 4-5 to compute the BDT address. 2. After reading the BDT, if the OWN bit equals 1, the SIE DMAs the data to or from the buffer indicated by the BD’s ADDR field.
38 USB Register Summary Table 4-7. USB Register Summary Hex Offset Mnemonic Register Description Page 00 INT_STAT Bits for each interrupt source in the USB. 39 02 ERR_STAT Bits for each error source in the USB. 41 04 STAT Transaction status in the USB.
39 USB Register Definitions The following sections provide the USB r egister definitions. In these sections: The register mnemonic is provided for reference purposes. The register address shown is the address location of the register in the CRB.
40 Bits Field Name Description 8 USB_RST Enable/Disable USB_RST Interrupt 1 = enable the USB_RST interrupt. 0 = disable the USB_RST interrupt ( default ). 7 STALL Stall Used in target and host modes. • In target mode, it asserts w hen the SIE sends a stall handshake.
41 Error Register The Error register contains bits for each of the error sources in the USB. Each of these bits is qualified with its respective error enable bits. The result is OR’ed together and sent to the ERROR bit of the Interrupt Status register.
42 Bits Field Name Description 5 DMAERR 1 = USB requests a DMA access to r ead a new BDT, but is not given the bus before USB needs to receive or transmit data. • If processing a TX transfer, this c auses a transmit data underflow condition. • If processing an Rx transfer, this caus es a receive data overflow condition.
43 Status Register The Status register reports t he transaction status within the USB. When the microprocessor has received a TOK_DNE interrupt, the Status register should be read to determine the status of the previous endpoint communication. The data in the status register is valid when the TOK_DNE interrupt bit is asserted.
44 Bits Field Name Description 12 RESET USB Reset Signal 1 = enables the USB to generate USB reset signaling. This allows the USB to reset USB peripherals. This control si gnal is only valid in host mode, (i.e., HOST_MDOE_EN=1). Software must set R ESET to 1 for the required amount of time and then clear it to 0 to end reset signaling.
45 Address Register The Address register contains the unique U SB address that the USB decodes in peripheral mode (HOST_MODE_EN=0). In host mode (HOS T_MODE_EN=1), the U SB transmits this address with a TOKEN packet. This enables t he USB to uniquely address any USB peripheral.
46 Frame Number Registers The Frame Number registers contain the 11-bi t frame number. The current frame number is updated in these registers when a SOF_TOKEN is received.
47 Token Register The Token register performs USB transacti ons when in host mode (HOST_MODE_EN=1). When the host microprocessor wants to execute a USB transaction to a peri pheral, it writes the TOKEN type and endpoint to this register.
48 Table 4-18. Token Register BIT 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 OFFSET 0Ah SOF Threshold Register Token Register FIELD CNT[7:0] TOKEN_PID TOKEN_ENDPT RESET 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RW R/ W R/ W R/ W R/ W R/ W R/ W R/ W R/ W R/ W R/ W R/ W R/ W R/ W R/ W R/ W R/ W Table 4-19.
49 Endpoint Control Registers The Endpoint Control registers contain the endpoint control bits for the 16 endpoints available on USB for a decoded address. These four bits define all the control necessary for any one endpoint. Endpoint 0 (ENDPT0) is associated with control pipe 0, which is required by USB for all functions.
50 Table 4-23. Endpoint Control Register Definitions EP_CTL_DIS EP_RX_EN EP_TX_EN Endpoint Enable / Direction Control /// 0 0 Disable endpoint. /// 0 1 Enable endpoint for TX transfer only. /// 1 0 Enable endpoint for RX transfer only. 1 1 1 Enable endpoint for RX and TX transfers.
51 Sample Host Mode Operations Figure 3. Enable Host Mode and Configure a Target Device.
52 Figure 4. Full-Speed Bulk Data Transfers to a Target Device.
53 USB Pull-up/Pull-down Resistors USB uses pull-up or pull-down resistors to deter mine when an attach or detach event occurs on the bus. Host mode complicates the resistors, since it requires devices to operate as either a USB target device or a USB host.
54 USB Interface Signals Clock (CLK) The clock input is required to be connec ted to a 12 MHz signal that is derived from the USB signals. USP Speed (SPEED) The USB speed indicator is used by ex ternal USB transceiver logic to determine which speed interface the USB is implementing.
55 5 5 : : C C A A N N C C o o n n t t r r o o l l l l e e r r s s This chapter describes the DSTni CAN controller. Topics include: CANBUS Background on page 56 Features on page 57 Theory .
56 CANBUS Background CAN is a fast and highly reliable, multicast/mul timaster, prioritized serial communications protocol that is designed to provide reliable and cost-effective links. CAN uses a twisted-pair cable to communicate at speeds of up to 1 MB/s with up to 127 nodes.
57 CANBUS Speed and Length Table 7-1 shows the relationship bet ween the bit rate and cable length. Table 5-1. Bit Rates for Different Cable Lengths Bit Rate Cable Length 10 KB/s 6.
58 Theory of Operation The CAN controller appears to the microprocesso r as an I/O device. Each peripheral has 256 bytes of I/O address space allocated to it. CAN0 and CAN1 share Interrupt 6. Table 5-2. CAN I/O Address CAN Controller Base Address CAN0 A800h CAN1 A900h CAN Register Summaries DSTni contains two independent CAN channels.
59 Hex Offset Register 30 RxMessage: ID, ID28-13 32 ID12-00 34 RxMessage: Data, D55-48, D63-56 36 D39-32, D47-40 38 D23-16, D31-24 3A D07-00, D15-08 3C RxMessage: RTR, IDE, DLC_3-0,AFI_2-0 3E RxMessag.
60 Detailed CAN Register Map Table 5-4. Detailed CAN Register Map Hex Offset Register 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 0x00 TX Msg 0 ID28 ID27 ID26 ID25 ID24 ID23 ID22 ID21 ID20 ID19 ID18 ID17 ID.
61 Hex Offset Register 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 0x30 RX Msg ID28 ID27 ID26 ID25 ID24 ID23 ID22 ID21 ID20 ID19 ID18 ID17 ID16 ID15 ID14 ID13 0x32 /// ID12 ID11 ID10 ID09 ID08 ID07 ID06 ID0.
62 Hex Offset Register 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 0x52 Acceptance Mask Register 0 ID28 ID27 ID26 ID25 ID24 ID23 ID22 ID21 ID20 ID19 ID18 ID17 ID16 ID15 ID14 ID13 0x54 /// ID12 ID11 ID10 ID0.
63 CAN Register Definitions TX Message Registers To avoid priority inversion issues in the transmi t path, three transmit buffers are available with a built-in priority arbiter. When a message is trans mitted, the priority arbiter evaluates all pending messages and selects the one with the highest prio rity.
64 Tx Message Registers Table 5-5 shows TxMessage_0 registers. The registers for TxMessage_1 and TxMessage_2 are identical except for the offsets. Table 5-5. TxMessage_0:ID28 BIT 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 OFFSET 00h FIELD ID28 ID27 ID26 ID25 ID24 ID23 ID22 ID21 ID20 ID19 ID18 ID17 ID16 ID15 ID14 ID13 Table 5-6.
65 Table 5-12. TxMessage_0:Ctrl Flags BIT 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 OFFSET 0E FIELD /// /// /// /// /// /// /// /// /// /// /// /// /// /// Tx Abort TRX Table 5-13. TxMessage_0 Register Definitions Field Name Description ID_28:ID_0 Message Identifier for Both Standard and Extended Messages Standard messages use ID_28 .
66 RX Message Registers A 4-message-deep FIFO stores the incoming me ssages. Status flags indicate how many messages are stored. Additional flags determine from which acceptance filter the actual message is coming from.
67 Rx Message Registers The following table shows RxMessage registers. See the complete register table at the start of this section. Table 5-14. RxMessage:ID28 BIT 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 .
68 Table 5-20. Rx Message: Data 39 BIT 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 OFFSET 36h FIELD D39 D38 D37 D36 D35 D34 D33 D32 D47 D46 D45 D44 D43 D42 D41 D40 RESET 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W Table 5-21.
69 Table 5-26. RxMessage: RTR BIT 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 OFFSET 3C FIELD /// AFI_2 AFI_1 AFI_0 /// RTR IDE DLC_3 DLC_2 DLC_1 DLC_0 RESET 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W Table 5-27.
70 Error Count and Status Registers Table 5-30. Tx/Rx Error Count BIT 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 OFFSET 40h FIELD RE7 RE6 RE5 RE4 RE3 RE2 RE1 RE0 TE7 TE6 TE5 TE4 TE3 TE2 TE1 TE0 RESET 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W Table 5-31.
71 Table 5-34. Tx/Rx Message Level Register BIT 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 OFFSET 44h FIELD /// RL1 RL0 TL1 TL0 RESET 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W Table 5-35.
72 Interrupt Flags The following flags are set on internal events (they activate an interrupt line when enabled). They are cleared by writing a ‘ 1’ to the appropr iate flag. Acknowledging the tx_msg interrupt also acknowledges all tx_xmit interrupt source s.
73 Interrupt Enable Registers All interrupt sources are grouped into three groups (traffic, error and diagnostics interrupts). To enable a particular interrupt, set its enable flag to ‘ 1’ .
74 Bits Field Name Description 3 OVR_LOAD Ov erload Condition − int3n group (diagnostic interrupts) 1 = enable flag set. 0 = enable flag not set. 2 ARB_LOSS A rbitration Los s − int3n group (diagnostic interrupts) 1 = enable flag set. 0 = enable flag not set.
75 Figure 5-3. CAN Operating Mode CAN Module 1 CAN Module 2 a c b d CAN Port 1 CAN Port 2 DSTni Note: The Loopback Mode register in CAN module 2 is not functional. For proper operation in loopback mode, the configuration of both CAN modules must be the same.
76 Table 5-44. Configuration Register BIT 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 OFFSET 4Eh FIELD OVR_MSG TS2_2 TS2_1 TS2_0 TS1_3 TS1_2 TS1_1 TS1_0 /// AUTO_RES CFG_SJW1 SAMP_MOD EDGE_MOD RESET 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W Table 5-45.
77 The following relations exist for bit time, time quanta, time segments ½, and the data sampling point. Figure 5-4. Bit Time, Time Quanta, and Sample Point Relationships Bit Time 1 tse g1 + 1 tse g2 + 1 time quanta (T Q) Sample Point Bittime = (1+ ( tseg1 + 1) + (tseg2 + 1)) x timequanta timequanta = (bitrate +1) / f clk e.
78 Acceptance Filter and Acceptance Code Mask Three programmable Acceptance Mask and Acceptanc e Code register (AMR/ACR) pairs filter incoming messages. The acceptance mask register (AMR) defines whether the incoming bit is checked against the acceptance code register (ACR).
79 Table 5-50. Acceptance Mask Register: ID 12 BIT 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 OFFSET 54h FIELD ID12 ID11 ID10 ID09 ID08 ID07 ID06 ID05 ID04 ID03 ID02 ID01 ID00 IDE RTR /// RESET 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W Table 5-51.
80 Table 5-54. Acceptance Code Register BIT 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 OFFSET 58h FIELD ID28 ID27 ID26 ID25 ID24 ID23 ID22 ID21 ID20 ID19 ID18 ID17 ID16 ID15 ID14 ID13 RESET 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W Table 5-55.
81 CANbus Analysis Three additional registers are provided for advanc ed analysis of a CAN system. These registers include arbitration lost and error capture regist ers, as well as a CANbus frame reference register that contains information about the CANbus state and the physical Rx and TX pins.
82 Error Capture Register The Error Capture register captures the most recent error event with the frame reference pointer, rx- and tx-mode and t he associated error code.
83 Frame Reference Register The Frame Reference register contains informat ion of the current bit of the CAN message. A frame reference pointer indicates the current bit position. This enables message tracing on bit level. Note: The reset value of this register’s bits is indeterm inate.
84 Bits Field Name Description 5:0 FRB[5:0] frame_ref_bit_nr A 6-bit vector that counts t he bit numbers in one field. Example: if field = “data” = “01010”, “bit_nr” = “000000”, and “tx_mode” = ‘1’, it indicates that the first data bit is being transmitted.
85 You can also provide local isolated power for t he transceiver circuits, as required when using CANopen. If you are using both DeviceNet and CANopen, use the jumpers to select between bus power (+5_BUS) or isolated power (ISO_P WR). The jumpers P_C05V and P_C0G will then provide +5_CAN and GND_CAN to the transceiver circuits.
86 Figure 5-8. CAN Transceiver and Isolation Circuits +5_CAN 1 U6 HCPL-O601 VCC GND 8 5 C67 0. 01uf R191 680 7 +3.3 v 2 R193 270 CAN_TX 3 4 +5_CAN 47 0 6 RXD 4 TXD U18 PCA82C2 51 CANL CANH 6 CAN- 7 CAN+ C10 0. 01uf GND_ CAN 3 V+ 82 GND_CA N GND RS 1 GND_CA N C9 0.
87.
Ein wichtiger Punkt beim Kauf des Geräts Lantronix DSTni-EX (oder sogar vor seinem Kauf) ist das durchlesen seiner Bedienungsanleitung. Dies sollten wir wegen ein paar einfacher Gründe machen:
Wenn Sie Lantronix DSTni-EX noch nicht gekauft haben, ist jetzt ein guter Moment, um sich mit den grundliegenden Daten des Produkts bekannt zu machen. Schauen Sie zuerst die ersten Seiten der Anleitung durch, die Sie oben finden. Dort finden Sie die wichtigsten technischen Daten für Lantronix DSTni-EX - auf diese Weise prüfen Sie, ob das Gerät Ihren Wünschen entspricht. Wenn Sie tiefer in die Benutzeranleitung von Lantronix DSTni-EX reinschauen, lernen Sie alle zugänglichen Produktfunktionen kennen, sowie erhalten Informationen über die Nutzung. Die Informationen, die Sie über Lantronix DSTni-EX erhalten, werden Ihnen bestimmt bei der Kaufentscheidung helfen.
Wenn Sie aber schon Lantronix DSTni-EX besitzen, und noch keine Gelegenheit dazu hatten, die Bedienungsanleitung zu lesen, sollten Sie es aufgrund der oben beschriebenen Gründe machen. Sie erfahren dann, ob Sie die zugänglichen Funktionen richtig genutzt haben, aber auch, ob Sie keine Fehler begangen haben, die den Nutzungszeitraum von Lantronix DSTni-EX verkürzen könnten.
Jedoch ist die eine der wichtigsten Rollen, die eine Bedienungsanleitung für den Nutzer spielt, die Hilfe bei der Lösung von Problemen mit Lantronix DSTni-EX. Sie finden dort fast immer Troubleshooting, also die am häufigsten auftauchenden Störungen und Mängel bei Lantronix DSTni-EX gemeinsam mit Hinweisen bezüglich der Arten ihrer Lösung. Sogar wenn es Ihnen nicht gelingen sollte das Problem alleine zu bewältigen, die Anleitung zeigt Ihnen die weitere Vorgehensweise – den Kontakt zur Kundenberatung oder dem naheliegenden Service.